L'hypothèse nulle indique généralement qu'il n'y a pas d'effet, par exemple : le sexe n'a pas d'effet sur le salaire. Dans un test d'hypothèse, seule l'hypothèse nulle peut être testée ; l'objectif est de déterminer si l'hypothèse nulle est rejetée ou non.
L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage. Cette hypothèse est formulée dans le but d'être rejetée.
Les chercheurs peuvent rejeter l'hypothèse nulle en faveur d'une autre hypothèse si les données contredisent l'hypothèse nulle et montrent une différence ou un lien significatif.
Si H0 est vraie, alors la kinésithérapie est inefficace, le taux de guérison sera identique dans les 2 groupes. Si H1 est vraie, alors la kinésithérapie est efficace ou délétère, le taux de guérison sera différent entre les 2 groupes.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage. Cette hypothèse est formulée dans le but d'être rejetée.
H0 : µ = µ0 H1 : µ = µ0. 2. Calcul de la statistique pertinente avec les valeurs de l'échantillon : Z0 = X − µ0 σ/ √ n .
Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0. Si p est supérieur à α, ne rejetez pas H0 (en principe, vous n'acceptez jamais l'hypothèse H0, mais vous vous contentez de ne pas la rejeter)
C'est une idée que l'on va chercher à prouver par la suite. → L'hypothèse doit répondre au problème et être affirmative. Exemple : HYPOTHESE : Les feuilles mortes tombés en automne ont disparu l'été suivant PEUT-ETRE car les êtres vivants de la forêt les ont mangées.
Il existe différents types d'hypothèses. Nous distinguons quatre types : l'hypothèse descriptive, l'hypothèse explicative en termes de facteurs, l'hypothèse explicative en termes de typologie, l'hypothèse explicative en termes de processus.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
Une erreur de type I survient dans un test d'hypothèse statistique lorsqu'une hypothèse nulle, qui est en réalité vraie, est rejetée par erreur. Les erreurs de type I sont également connues sous le nom de « faux positifs », elles représentent la détection d'un effet positif alors qu'il n'existe aucun effet en réalité.
Il y a toujours deux hypothèses qui sont exactement opposées l'une à l'autre ou qui affirment le contraire. Ces hypothèses opposées sont appelées hypothèse nulle et hypothèse alternative et sont abrégées par H0 et H1.
Une bonne hypothèse suit généralement le modèle “Si… alors… parce que…” Voici un exemple : “Si [vous modifiez la variable indépendante], alors [vous prévoyez ce qui se passera avec la variable dépendante], parce que [expliquez la logique ou la base de votre prédiction].”
L'important est de bien structurer l'hypothèse généralement articulée autour d'un argument principal. Il s'agit tout simplement de trouver et poser les bonnes questions au préalable. Une hypothèse est une explication proposée pour un ensemble de faits ou de phénomènes observés.
Prendre en compte les données du sujet et vos connaissances. 2. Rédiger une phrase à la forme affirmative 3. Formuler l'aspect provisoire de cette phrase en utilisant un verbe conjugué au présent ou au conditionnel « je suppose que / il se pourrait que … » ou en utilisant l'adverbe « peut-être ».
L'hypothèse est en effet une réponse provisoire à la question préalablement posée. Elle tend à émettre une relation entre des faits significatifs et permet de les interpréter. Pour que la recherche soit valable, les hypothèses doivent cependant être vérifiables, plausibles et précises.
Synonyme : postulat, prémisse, principe, théorie.
Construire une problématique, c'est en fait interroger le sujet. Mais il faut poser des questions pertinentes, qui font débat. La problématique guide la réflexion sur le sujet, ouvre des axes de recherche qui permettent de préciser les différents arguments qui alimenteront votre démonstration.
Une erreur de type II survient dans un test d'hypothèse statistique lorsque l'hypothèse nulle est acceptée par erreur. Les erreurs de type II sont également connues sous le nom de « faux négatifs », elles représentent l'échec de détection d'un effet positif alors qu'il existe.
Test d'homogénéité : comparaison de plusieurs échantillons entre eux.
Suivant la nature du test, la valeur p se calcule de trois façons différentes : pour un test unilatéral à droite, si X est la variable aléatoire que devrait suivre la quantité observée sous l'hypothèse nulle, et si x0 est la valeur observée, alors la valeur p est par définition P(X≥x0). P ( X ≥ x 0 ) .
Niveau de signification
Si la valeur p calculée est inférieure à cette valeur, l'hypothèse nulle est rejetée, sinon elle est maintenue. En règle générale, on choisit un niveau de signification de 5 %. alpha < 0,01 : résultat très significatif. alpha < 0,05 : résultat significatif.
Pour parler d'une hypothèse sur le présent, on utilise si + imparfait et le conditionnel présent. Exemple : Si les enfants sortaient plus tard de l'école, on viendrait les chercher. = les enfants ne sortent pas plus tard de l'école, on ne vient pas les chercher.
Elle doit être formulée de façon précise et sous forme affirmative. Elle doit être vérifiable et vraisemblable par rapport au corpus théorique déjà existant. Une hypothèse doit être réfutable : son rôle essentiel est de permettre de rejeter ou de maintenir une explication possible de l'occurrence d'un phénomène.