Les 2 tests “classiques” de normalité d'une variable sont le test de Kolmogorov-Smirnov et le test de Shapiro-Wilk, tous les deux implémentés dans R par le biais des fonctions ks.
Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche). Si vous avez plus de deux groupes dans votre étude, comme l'ethnicité (africaine, asiatique, blanche, etc.)
Les tests non-paramétriques ne se basent pas sur des distributions statistiques. Ils peuvent donc être utilisés même si les conditions de validité des tests paramétriques ne sont pas vérifiées. Les tests paramétriques ont souvent des tests non-paramétriques équivalents.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
La procédure Test U de Mann-Whitney utilise le rang de chaque observation pour tester si les groupes sont issus de la même population. Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente.
test: Fonction R pour faire le test de student. La fonction R à utiliser pour faire le test-t de student est t. test(). Elle permet de faire les différents types du test de student mentionnés ci-dessus.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon. Tous ces tests sont dits non paramétriques car ils ne nécessitent pas d'estimation de la moyenne et de la variance.
Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives.
Pour interpréter cette valeur, on se réfère à la table du Khi2 qui présente les valeurs (cases de la table) ayant une probabilité donnée d'être dépassées (en colonne), selon différents degrés de liberté (en ligne) : - La probabilité est notre seuil ou marge d'erreur que nous nous fixons (en général 5%).
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
Définition. Le test de Dunn est un test statistique utilisé pour effectuer un nombre spécifique de comparaisons entre des groupes de données et déterminer laquelle d'entre elles est significative.
Pour calculer la statistique de Wilcoxon Ws mesurant la différence de position entre le premier échantillon E1, et l'échantillon E2 auquel on soustrait D, on regroupe les valeurs obtenues pour les deux échantillons, puis on les ordonne. La statistique Ws est la somme des rangs de l'un des échantillons.
2. Le test de Mann-Whitney. le test de Mann-Whitney est l'alternative non paramétrique de t de Student pour deux échantillons indépendants. Lorsque la distribution des valeurs ne suit pas une loi normale, donc dissymétrique, le test t de student ne s'applique pas; il faut utiliser plutôt le test de Mann-Whitney.
Le test-t de Student est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
En statistique, le test de Wilcoxon-Mann-Whitney (ou test U de Mann-Whitney ou encore test de la somme des rangs de Wilcoxon) est un test statistique non paramétrique qui permet de tester l'hypothèse selon laquelle les distributions de chacun de deux groupes de données sont proches.
La corrélation de Spearman est l'équivalent non-paramétrique de la corrélation de Pearson. Elle mesure le lien entre deux variables. Si les variables sont ordinales, discrètes ou qu'elles ne suivent pas une loi normale, on utilise la corrélation de Spearman.
l'ACP est utilisé sur un tableau de données où toutes les variables sur tous les individus sont numériques. L'AFC, elle, s'utilise avec des variables qualitatives qui possèdent deux ou plus de deux modalités. L'AFC offre une visualisation en deux dimensions des tableaux de contingence.
TEST DE CHI AU CARRÉ
Il détermine s'il existe une association entre des variables qualitatives. Si la valeur P associée à la statistique de contraste est plus petite on rejettera l'hypothèse nulle. Elle permet d'évaluer l'effet du hasard.