Contrairement au k-means, la classification hiérarchique ne nécessite pas de déterminer un nombre de classes au préalable. En effet, en jouant sur la profondeur de l'arbre, on peut explorer différentes possibilités et choisir le nombre de classes qui nous convient le mieux.
D'une part, KNN fait appel à un mode d'apprentissage supervisé : les données doivent être étiquetées en amont. D'autre part, la méthode KNN est surtout utilisée pour les problèmes de classification et de régression, alors que K-means sert exclusivement au partitionnement de données.
Il existe deux grandes méthodes de classification hiérarchique à la disposition des chercheurs en sciences de gestion : l'ascendante et la descendante. La première construit une hiérarchie entière qui prend progressivement la forme d'un arbre ou d'un dendrogramme en respectant un ordre ascendant.
La méthode centroïde la plus classique est la méthode des k-moyennes. Elle ne nécessite qu'un seul choix de départ : k, le nombre de classes voulues. On initialise l'algorithme avec k points au hasard parmi les n individus. Ces k points représentent alors les k classes dans cette première étape.
La classification ascendante hiérarchique (CAH) est une méthode de classification qui présente les avantages suivants : On travaille à partir des dissimilarités entre les objets que l'on veut regrouper. On peut donc choisir un type de dissimilarité adapté au sujet étudié et à la nature des données.
L'étape ACP peut être considérée comme une étape réduisant le bruit de fond dans les données, ce qui peut conduire à une classification plus stable.
Le principe de la CAH est de rassembler des individus selon un critère de ressemblance défini au préalable qui s'exprimera sous la forme d'une matrice de distances , exprimant la distance existant entre chaque individu pris deux à deux. Deux observations identiques auront une distance nulle.
Dans la classification, les données sont regroupées en analysant les objets de données dont l'étiquette de classe est connue. Le clustering analyse les objets de données sans connaître l'étiquette de classe.
K-Means est généralement utilisé sur pour l'analyse des données quantitatives. L'algorithme identifie dans un ensemble de données un certain nombre de centroïdes. C'est la moyenne arithmétique de tous les objets de données qui appartiennent à un cluster. Chaque point de donnée est attribué au cluster le plus proche.
K-means (ou K-moyennes) : C'est l'un des algorithmes de clustering les plus répandus. Il permet d'analyser un jeu de données caractérisées par un ensemble de descripteurs, afin de regrouper les données “similaires” en groupes (ou clusters).
Supervisé: toutes les données sont étiquetées et les algorithmes apprennent à prédire le résultat des données d'entrée. Non supervisé: toutes les données ne sont pas étiquetées et les algorithmes apprennent la structure inhérente à partir des données en entrée.
L'objectif de la classification supervisée est principalement de définir des règles permettant de classer des objets dans des classes à partir de variables qualitatives ou quantitatives caractérisant ces objets. Les méthodes s'étendent souvent à des variables Y quantitatives (régression).
On distingue principalement deux types d'algorithmes parmi les algorithmes d'apprentissage : les algorithmes de classification et de régression. La classification permet de prédire le résultat d'un échantillon donné pour les variables de sortie qui se présentent sous forme de catégorie.
En pratique, un facteur K (tout type confondu ; Uw, Ug ou Uf) est optimal quand ses valeurs gravitent autour de 1,1 à 0,6 W/(m²K). A noter qu'il existe également un coefficient R. Ce facteur mesure la capacité d'un matériau agissant comme un isolant.
Les méthodes de partitionnement font parties des trois familles d'outils d'analyse non supervisée les plus répandues avec la classification ascendante hiérarchique (CAH) et les méthodes à estimation de densité. , à partir de la structure même des données sans apport informatif d'une variable auxiliaire.
Les algorithmes de clustering les plus courants sont le K-Means, les algorithmes de maximisation de l'espérance (de type EM, comme les mixtures gaussiennes) et les partitions de graphes.
Ce nombre K doit être spécifié, mais il existe des approches pour déterminer son nombre optimal. La méthode des kmeans repose sur la minimisation de la somme des distances euclidiennes au carré entre chaque objet (ou sujet, ou point) et le centroïde (le point central) de son cluster.
Le clustering sert principalement à segmenter ou classifier une base de données (par exemple trier des données clients type âge, profession exercée, lieu de résidence, etc., pour optimiser la gestion de la relation client) ou extraire des connaissances pour tenter de relever des sous-ensembles de données difficiles à ...
Principe de fonctionnement
Un arbre de décision permet d'expliquer une variable cible à partir d'autres variables dites explicatives. Du point de vue mathématique : soit une matrice X avec m observations et n variables, associée à un vecteur Y à expliquer : il faut trouver une relation entre X et Y.
Sélectionner l'algorithme de clustering.
Dans ce cadre là, un clustering de sous-espace (subspace clustering), ou du co-clustering va à la fois générer des groupes de produits achetés souvent ensemble et des clusters constitués à partir de ces groupes. Les clusters seront ainsi définis par les groupes de produits.
Mais la mesure que l'on utilise le plus souvent lors des classifications automatiques, appelée écart de Ward, est définie par : d(Γm, Γl) := pmpl pm + pl d2(Gm,Gl)2 o`u pl et pm sont les poids des deux classes.
Comment lire un Dendrogramme ? Comme expliqué précédemment, les clades d'un Dendogramme sont organisés en fonction de leurs similitudes. De fait, les clades alignés sur la même hauteur sont similaires tandis que les clades de hauteurs différentes sont différents.
l'ACP est utilisé sur un tableau de données où toutes les variables sur tous les individus sont numériques. L'AFC, elle, s'utilise avec des variables qualitatives qui possèdent deux ou plus de deux modalités. L'AFC offre une visualisation en deux dimensions des tableaux de contingence.