Cette écriture est la forme canonique de la fonction polynôme. La forme canonique est donc : f ( x ) = 2 ( x + 1 ) 2 − 5 f(x) = 2(x + 1)^2-5 f(x)=2(x+1)2−5.
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
Règle. Pour passer de la forme canonique à la forme générale, il suffit de développer de façon algébrique l'équation de la fonction. Soit l'équation d'une fonction polynomiale de degré 2 sous la forme canonique : f(x)=3(x−4)2+5 f ( x ) = 3 ( x − 4 ) 2 + 5 .
On peut en déduire une formule. Pour mettre le trinôme x 2 + b x sous forme canonique, il faut ajouter et retrancher ( b 2 ) 2 . Par exemple, pour mettre x 2 + 6 x sous forme canonique, on ajoute et on retranche ( 6 2 ) 2 = 9 .
Un polynôme du second degré n'est pas toujours factorisable. Mais la forme canonique permet de : Savoir si on peut factoriser. Factoriser (mettre sous la forme d'un produit de deux facteurs) lorsque cela est possible.
Une fonction polynôme de degré 2 est une fonction définie sur R dont l'expression algébrique peut être mise sous la forme : f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c, avec a ≠ 0 a\neq0 a=0.
La forme canonique : f(x)=a(x−h)2+k f ( x ) = a ( x − h ) 2 + k où h et k sont les coordonnées du sommet.
La forme canonique d'un trinôme du second degré de la forme f\left(x\right)=ax^2+bx+c est : f\left(x\right)=a\left(x-\alpha\right)^2+\beta, avec : \alpha = -\dfrac{b}{2a} \beta = f\left(\alpha\right) = \dfrac{-\Delta}{4a}
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Propriété Soit f ( x ) = a x 2 + b x + c où a ≠ 0 un polynôme du second degré et Δ = b 2 − 4 a c son discriminant. Si : se factorise sous la forme f ( x ) = a ( x − x 1 ) ( x − x 2 ) où et sont les deux racines du polynôme.
C'est la forme développée de 2(x – 3)(x + 2)(x – 1). On dit qu'un réel r est une racine d'une fonction polynôme du troisième degré f d'expression f(x) = ax3 + bx2 + cx + d lorsque f(r) = 0, c'est-à-dire lorsque ar3 + br2 + cr + d = 0.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
On détermine les coordonnées du sommet de la parabole. L'abscisse du sommet de la parabole est égale à la demi-somme des abscisses de ses points d'intersection avec l'axe des Un plan cartésien. Les axes des x et des y sont tous deux gradués de un.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
Pour P(x) = ax + b,a 0, P est un polynôme du premier degré et pour P(x) = ax2 + bx + c,a 0, P est un polynôme du seconde degré. Pour k allant de 0 à n, les réels ak sont appelés coefficients de degré k du polynôme P. ! Par convention, le degré du polynôme nul, P(x) = 0 est égal à −∞.
Afin de simplifier les écritures littérales, on adoptera quelques conventions : 0 × x = 0, 1 × x = x et –1 × x = –x ; Le signe « × » est supprimé entre 2 lettres ou devant une lettre ; Exemples : 2 × b = 2b ou 3 × x × y = 3xy.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Une expression littérale contient des lettres. L, l, a, b sont des lettres qui représentent des nombres, elles figurent dans les expressions 2 × (l + L), 2a + 3, 2 × a × b. Ce sont des expressions littérales.
Propriété d'un polynôme du troisième degré
Si $x_0$ est une racine du polynôme ($P(x_0) = 0$) alors $P$ se factorise sous la forme suivante : $P(x) = (x – x_0)\times Q(x)$ avec $Q$ un polynôme du second degré.
Définition 6 : On dit qu'un polynôme P est factorisable par (x − a) s'il existe un polynôme Q tel que pour tout x réel : P(x) = (x −a)Q(x) .
Pour simplifier une fonction rationnelle 𝑓 ( 𝑥 ) = 𝑝 ( 𝑥 ) 𝑞 ( 𝑥 ) , nous devons effectuer les étapes suivantes : Déterminer les valeurs de 𝑥 avec 𝑞 ( 𝑥 ) = 0 . Ensuite, le domaine de définition de 𝑓 ( 𝑥 ) comprend toutes les valeurs réelles sauf ces racines.
Résoudre une inéquation consiste à trouver l'ensemble des valeurs par lesquelles on peut remplacer la variable pour obtenir une inégalité vraie. Par exemple : La solution x=1 est une des solutions de l'inégalité 2x+1<5, car en la remplaçant dans cette dernière on obtient 2×1+1<5 qui est une inégalité vraie.