le nombre 156 n'est pas un nombre divzar car ses diviseurs sont 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156. La somme de tous ses diviseurs sauf lui-même est plus grande que 156 : 1+2+3+4+6+12+13+26+39+52+78=236 > 156. Mais il existe une somme de certains de ses diviseurs qui lui est égale : 78+52+26=156.
3 et 4 sont des diviseurs de 156 car 3 \times 4 \times 13 = 156.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Par convention, un diviseur de 0 est un nombre non nul (et ainsi 0 n'est pas diviseur de 0) dans les cours que j'ai lus. Lorsque l'anneau (A,+,.) est non réduit à {0} et est intègre, il n'y a pas de diviseur de 0 dans A (comme R et Z par exemple) .
Le nombre de diviseurs d'un nombre est égal au produit des puissances de chacun de ses facteurs premiers, chacune augmentée de 1.
Remarque : Le nombre 1 n'est pas premier car il n'a qu'un seul diviseur.
Ces deux nombres ont donc 22 × 3 en commun dans leurs décompositions en produit de facteurs premiers. Comme 22 × 3 = 12, le plus grand diviseur commun aux nombres 252 et 156 est donc 12.
Remarque : • Le nombre 1 divise tout entier naturel. Tout entier naturel est diviseur de lui-même. Le nombre 0 ne divise aucun entier naturel différent de 0. Le nombre 0 est multiple de tous les entiers naturels.
La division euclidienne dans ℤ montre que cet ensemble est un anneau euclidien, en conséquence ℤ est un anneau principal. Cela signifie que pour tout idéal I de ℤ, il existe un entier n tel que I est égal à nℤ. Comme les idéaux nℤ et -nℤ sont confondus, il est toujours possible de choisir n positif.
Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l'égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Exemple. Le nombre 151 est premier, car 151 ≈ 12,3, et 151 n'est pas divisible par 2 ; 3 ; 5 ; 7 et 11. Liste des nombres premiers entre 1 et 100. 0 n'est pas premier, il possède une infinité de diviseurs.
On peut décomposer 324 en produit de facteurs premiers pour aider : 324 = 22 × 34. Les diviseurs de 324 sont 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 ; 18 ; 27 ; 36 ; 54 ; 81 ; 108 ; 162 ; 324.
Comme souvent, c'est une pratique qui vient du monde anglo-saxon et de la plateforme de vidéos TikTok. Le plus courant est le 143, qui signifie « je t'aime ». À chaque chiffre correspond le nombre de lettres d'un mot anglais. Ici, le 1 pour le « I », le 4 pour « love » et le 3 pour « you ».
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés.