Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Trigonométrie Exemples
La valeur exacte de cos(90) est 0 .
Trigonométrie Exemples
La valeur exacte de cos(45) est √22 . Le résultat peut être affiché en différentes formes.
Dans un triangle rectangle, le cosinus d'un angle est égal au rapport de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.)
Le sinus de 𝜃 est égal à l'opposé sur l'hypoténuse et le cosinus, ou cosinus, de 𝜃 est égal à l'adjacent sur l'hypoténuse. Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Soit racine carrée de trois sur deux. Ensuite, le cosinus de 60 degrés est égal à la longueur du côté adjacent sur la longueur de l'hypoténuse. Cela fait un sur deux ou un demi. Enfin, la tangente de 60 degrés est égale à la longueur du côté opposé sur la longueur du côté adjacent.
Trigonométrie Exemples
La valeur exacte de cos(0) est 1 .
La loi des cosinus est une formule qui permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Elle est donc valable pour tous les triangles.
Dans un triangle quelconque, relation qui permet d'établir que le carré d'un côté est égal à la somme des carrés des deux autres côtés moins deux fois le produit de ces côtés par le cosinus de l'angle qu'ils forment. Dans le triangle ABC ci-dessous, la loi du cosinus prend les trois formes suivantes : a2=b2+c2–2bccosα
(ou sur des calculatrices plus anciennes : entrer la mesure de l'angle puis appuyez sur COS). Pour trouver la mesure de l'angle aigu à partir d'un cosinus, appuyez sur la touche 2nd (ou shift) puis COS (qui devient Cos-1) (ou Acs, ou Arccos), entrez la valeur du cosinus, puis appuyez sur enter.
Ainsi, pour tout x ∈ R, cos(x) = 0 si et seulement si x = π/2 + k×2π avec k ∈ Z OU x=3π/2 + l×2π avec l ∈ Z : on retrouve bien l'ensemble des multiples impairs de π/2. On obtient donc bien que le domaine de définition de la fonction tangente est : R\{(2k+1)π/2, avec k ∈ Z}.
Autrement dit, le sinus d'un angle est égal au cosinus de son complémentaire. Cette démonstration n'est valable que si est compris entre et . Vous apprendrez plus tard que cette relation est vraie quelle que soit sa valeur en radians.
L'astronome et mathématicien indien Aryabhata (476-550), dans son ouvrage Arya-Siddhanta, définit pour la première fois le sinus (moderne) à partir de la relation entre la moitié d'un angle et la moitié d'une corde, tout en définissant également le cosinus, le contre-sinus (ou sinus verse), et l'inverse du sinus.
Cosinus(angle) = Adjacent ÷ Hypothénuse. Sinus(angle) = Opposé ÷ Hypothénuse. Tangente(angle) = Opposé ÷ Adjacent. Calculer la surface d'un cercle (aire d'un cercle) ?
Comment effectuer le calcul de l'angle ? L'angle de la pente (mesuré en degrés) sert à déterminer une inclinaison. Pour déterminer la valeur d'un angle, il faut prendre l'arc-tangente de la hauteur divisée par la largeur, le tout multiplié par 180/π pour obtenir la valeur en degré.
En fait, il a deux hypoténuses confondues et un coté nulle ! Le sinus de l'angle droit donne Opposé / Hypoténuse soit Hypoténuse / Hypoténuse = 1. Et le cosinus de l'angle droit donne Adjacent / Hypoténuse soit nul / Hypoténuse = 0 .
On peut donc écrire que le sinus de 30 degrés est égal au côté opposé — c'est 𝑏 — divisé par l'hypoténuse — c'est 𝑐. Puisqu'on a ces valeurs, on peut remplacer 𝑏 par un et 𝑐 par deux, ce qui donne que le sinus de 30 degrés est égal à un sur deux, ou un demi.
Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car le sinus est négatif dans le quatrième quadrant. La valeur exacte de sin(45) est √22 .
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
Calcul du sinus
Le résultat est : sin 50° = 0,766 (au millième près). Remarque : la démarche est la même pour calculer un cosinus ou une tangente.