Le nombre 0 a une infinité de diviseurs , car tous les nombres divisent 0 et le résultat vaut 0 (excepté pour 0 lui-même car la division par 0 n'a pas de sens, il est possible toutefois de dire que 0 est un multiple de 0 ).
La division par zéro donne l'infini. Cette convention a d'ailleurs été défendue par Louis Couturat dans son livre De l'infini mathématique. Cette convention est assez cohérente avec les règles de la droite réelle achevée, dans laquelle n'importe quel nombre, divisé par l'infini, donne 0.
Pour n'importe quel nombre x, son inverse est donc x' tel que x x x' = 1. Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
Si n est égal à 1, n ne possède qu'un seul diviseur : 1. Tout entier n strictement supérieur à 1 possède au moins deux diviseurs 1 et n qui sont appelés ses diviseurs triviaux.
Dans le cas du nombre 1, les deux diviseurs 1 et lui-même ne sont pas distincts : ce sont les mêmes.
0 : en effet, 0 est divisible par n'importe quel nombre entier, il est donc aussi un multiple de 10 puisque 0 × 10 = 0. 10 : en effet, 10 est bien un multiple de lui-même, puisque 10 est divisible par 10 (on a 10 / 10 = 1, donc le reste de cette division est bien nul)
Zéro est le seul nombre entier qui ne possède qu'un seul multiple: lui-même (0). Zéro possède un seul multiple, mais il est le multiple de tous les nombres entiers.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
0 : en effet, 0 est divisible par n'importe quel nombre entier, il est donc aussi un multiple de 16 puisque 0 × 16 = 0. 16 : en effet, 16 est bien un multiple de lui-même, puisque 16 est divisible par 16 (on a 16 / 16 = 1, donc le reste de cette division est bien nul) 32 : en effet, 32 = 16 × 2.
Les diviseurs d'un entier
Un nombre entier est divisible par 2 si son chiffre des unités est 0, 2, 4, 6 ou 8.
A noter que l'inverse de 0 n'existe pas car il est impossible de diviser par 0 en mathématiques. En effet, la division par 0 ne représente rien car on ne peut pas diviser une partie par quelque chose qui n'existe pas.
Standard IEEE sur les nombres à virgule flottante
pow définit 00 comme étant égal 1. Si la puissance est un entier, le résultat est le même que pour la fonction pown, sinon le résultat est le même que pour powr (sauf certains cas exceptionnels). pown définit 00 comme étant égal à 1.
la multiplication par 1 qui ne change pas le facteur : 1 × a = a × 1 = a. On dit que 1 est un élément neutre pour la multiplication ; la multiplication par 0 qui donne toujours 0 : 0 × a = a × 0 = 0. on dit que 0 est un élément absorbant pour la multiplication.
Un nombre est divisible par 5 si son chiffre des unités est 0 ou 5.
Bonjour, Tu dois savoir qu'il est interdit de diviser par 0. Une valeur interdite est une valeur de ton inconnue pour laquelle tu vas diviser par 0. Dans ton cas, tu dois tout d'abord mettre le tout sur le même dénominateur puis résoudre dénominateur = 0.
On nous appris qu'un chiffre fois 0 = 0[...] En fait, non. On t'a appris qu'un nombre multiplié par zéro est égal à zéro. Un chiffre n'est rien d'autre qu'un symbole, un dessin, une graphie qui permet de désigner, d'écrire les nombres.
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, … 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, … 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, …
Pour trouver les multiples de 3, il faut additionner tous les chiffres composant le nombre : si le total est égal à 3, 6 ou 9, c'est bien un multiple de 3. Ex. : si l'on additionne le 1 et le 2 du nombre 12, on trouve 3 (1 + 2 = 3) ; donc 12 est un multiple de 3 (3 × 4 = 12).
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Le zéro devient "un nombre nul" à partir du Ve siècle
En effet, pour les Hindous, le zéro cesse de se définir comme l'objet du néant, du vide, du rien. C'est eux qui marquent un pas en avant par rapport aux prescriptions philosophiques héritées d'Aristote.
Zéro est un nombre pair. Déterminer la parité d'un nombre entier relatif c'est dire s'il est pair ou impair. La façon la plus simple de prouver que zéro est pair c'est de vérifier qu'il correspond à la définition : en effet, c'est un entier multiple de 2.
Le nombre 0 est considéré comme un multiple de tout nombre entier n, car : 0 = 0 × n, mais 0 n'est un diviseur d'aucun nombre entier.
Définition Un entier naturel est dit premier s'il admet exactement deux diviseurs distincts : 1 et lui-même.
Le nombre 1 n'est pas premier car il ne possède qu'un seul diviseur : lui-même. Propriété : Tout nombre non premier se décompose de manière unique en produit de nombres premiers.