L'image de 1 par f vaut 1² = 1, soit f(1 )= 1. L'image de -1 par f vaut (-1)² = 1, soit f(-1)=1. Les antécédents de 1 sont toutes les valeurs a pour lesquelles f(a)=1, c'est à dire 1 et - 1.
A partir de la courbe de la fonction
Exemple : Trouver l'image de 1 par la fonction inverse f(x)=1/x f ( x ) = 1 / x c'est trouver l'intersection de la ligne d'abscisse x=1 avec la courbe, puis de descendre vers l'ordonnée correspondante : 1 donc f(1)=1 f ( 1 ) = 1 .
L'image d'un nombre x par une fonction f définie sur Df est le réel y tel que f(x)=y. Pour tout réel x, on a f\left(x\right) = x^2-3x+1. Calculer l'image de -2 par f.
Donc l' antécédent de 1 par f est 0 .
L'image de 0 par f est 0 + 3 = 3, soit f(0) = 3. L'antécédent de 3 par f est 0. L'image de 25 est , soit f(25) = 5. L'antécédent de 5 par f est 25.
Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 4. Il s'agit donc de remplacer x par 4 dans l'expression de f. L'image de 4 par la fonction f est donc égal à -20.
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
2 a donc deux antécédents qui sont 1 et 4.
L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0. L'antécédent de 3 par f est 6.
f) Quel nombre a pour image 16 ? 16 -4 = -4. C'est -4 qui a pour image 16 par f.
L'image de 3 par la fonction f est 0.
Pour une fonction donnée f : X → Y, l'ensemble de définition est X et l'ensemble d'arrivée est Y. L'image f(X) de X par f, aussi appelée l'image de f, est en général seulement un sous-ensemble strict de Y. On a f(X) = Y si et seulement si f est une surjection.
Définition. Le symétrique (ou l'image) du point A par rapport à la droite d est le point A' tel que d est la perpendiculaire qui passe par le milieu de [AA']. Remarque : le point B étant sur la droite d, son symétrique par raport à d est B lui-même (B est invariant).
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Réponse. L'image de -7 par la fonction f est 17.
L'antécédent de 0 est 0. -1 n'admet pas d'antécédent car l'équation x² = -1 n'admet pas de solution (et oui un carré est TOUJOURS positif !)
L'image d'une fonction f correspond à l'ensemble des valeurs que peut prendre la variable dépendante, généralement y. Par abus de langage, il est possible de confondre le concept d'image et de codomaine en prétendant que ce sont des synonymes.
donc : le nombre 1 n'a pas d'image par la fonction h. nombres sauf 1. x = – 6/2 = -3 et x ≠ 1 donc : 1 a un unique antécédent par la fonction h qui est : -3.
L'image de 6 par la fonction f est 12.
Principe. Pour calculer l'image de f (par exemple), c'est à dir calculer f(2), on remplace x par 2 dasn l'expression de f(x), tout simplement.
Le seul antécédent de 12 par la fonction f est donc x = 4.
- Si la fonction f est définie par la formule f(x) = 2x +3 alors: l'image du nombre 0 est obtenue en calculant f(0) = 2x0 + 3 soit f(0) = 3 donc l'image du nombre 0 par cette fonction f est 3.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.