En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
Triangle : Un triangle est un polygone particulier possédant trois côtés. La somme de ses angles vaut 180 ° 180\degree 180°. Un polygone est une figure géométrique fermée délimitée par différents segments.
Si un triangle est inscrit dans un cercle et que l'un des côtés du triangle est un diamètre du cercle, alors le triangle est rectangle.
Un triangle rectangle est un triangle dont un angle est droit, c'est-à-dire à 90°. C'est aussi une figure plane à trois côtés dont le carré du côté le plus long est égal à la somme des carrés des deux autres côtés.
En géométrie, un triangle rectangle est un triangle dont l'un des angles est droit, c'est-à-dire qu'il mesure 90°. Le côté opposé à l'angle droit est appelé l'hypoténuse.
Lorsqu'on nomme un triangle rectangle, on précise généralement le sommet dont l'angle mesure 90°. L'angle du sommet C mesure 90°. On dit alors que le triangle ABC est rectangle en C. Comme le triangle rectangle possède un angle droit, il possède également 2 côtés (segments) perpendiculaires.
Une réciproque tout aussi vraie
Elle s'énonce ainsi : si dans un triangle, le carré de la longueur d'un côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et on appelle hypoténuse, son plus grand côté.
Énoncé de la Réciproque de Pythagore:
Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Dans le cas d'un triangle rectangle, les côtés adjacents à l'angle droits constituent une base et sa hauteur. Par conséquent, pour calculer l'aire d'un triangle rectangle, il faut multiplier les longueurs des deux côtés adjacents à l'angle droit et diviser le résultat par 2.
Si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors ce triangle est un triangle rectangle. Si BC² =AB² +AC² , alors ABC est rectangle en A. Si on connaît les longueurs des trois côtés d'un triangle, on peut prouver qu'il est rectangle.
Si dans un triangle, le carré de la longueur du côté le plus long est égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle.
Dans un triangle:
Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.
En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base.
AB AM = AC AN = BC MN . deuxième quotient, les lettres A,CetN correspondent aux points de la deuxième sécante ; et dans le dernier quotient, on retrouve les lettres qui correspondent aux deux parallèles. Repérer les différentes configuration de Thalès et donner les égalités de quotients.
le théorème de Pythagore :
le carré de la longueur de l'hypoténuse est égale à la somme des carrés des longueurs des deux autres côtés. On peut calculer la longueur d'un côté d'un triangle rectangle quand on connaît les deux autres côtés. Pour cela, on prend la racine carrée d'un nombre.
Dans le triangle ABC rectangle en A, l'hypoténuse est le côté opposé à l'angle droit, c'est-à-dire [BC]. Le côté [AB] est adjacent à l'angle de sommet B et opposé à l'angle de sommet C. Le côté [AC] est adjacent à l'angle de sommet C et opposé à l'angle de sommet B.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux côtés de l'angle droit.
Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Enfin, la tangente est le rapport entre le sinus et le cosinus, ce qui revient à faire le rapport entre le côté opposé à l'angle et le côté adjacent à l'angle.
Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
Par exemple, il permet : de calculer la longueur de l'hypoténuse à partir des longueurs des deux autres côtés, de vérifier la présence d'un angle droit dans un triangle, à un GPS de calculer la distance qui sépare une voiture ou un téléphone de la ville de Limoges, par exemple, etc.
Conclusion : Le théorème de Pythagore s'applique au triangle rectangle seulement et permet de calculer un côté de celui-ci lorsque l'on connaît les deux autres.
Le théorème de Pythagore est un des théorèmes les plus utilisés en géométrie. Il indique que dans le cas d'un triangle dont l'un des angles est droit, le carré du côté opposé à l'angle droit est équivalent à la somme du carré de ses deux autres côtés.