Un triangle rectangle isocèle est un triangle ayant un angle droit et dont deux côtés sont de la même longueur. Un triangle rectangle isocèle tracé à la main. Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
Un triangle isocèle a deux angles de même mesure. Un triangle avec deux angles de même mesure est un triangle isocèle. Un triangle isocèle a au moins deux côtés de la même longueur. Un triangle équilatéral a trois côtés de la même longueur.
En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
Quelle est la mesure du côté adjacent d'un triangle rectangle isocèle dont le périmètre est égal à 10 ? Approximativement 2,93. Pour arriver à ce résultat, on utilise la formule côté adjacent = périmètre/(2 + √2) . Comme 2 + √2 est égal à environ 3,41 , on obtient côté adjacent ≈ 10 / 3,41 ≈ 2,93 .
De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle. Un triangle rectangle comportant deux côtés égaux est isocèle. Tout triangle comportant deux angles de 45° chacun est un triangle rectangle isocèle.
Théorème de Pythagore : Un triangle rectangle est un triangle dont le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
Calculez l'hypoténuse du triangle isocèle. Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm.
Alors, sur la figure, il y a autant de rose que les deux bleus réunis. Cette relation de Pythagore est importante car elle permet de calculer la longueur du troisième côté lorsqu'on connait la mesure des deux autres. Exemple: si b = 3 et h = 4, alors c² = 3² + 4² = 9 + 16 = 25 et c = 5.
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
L'hypoténuse d'un triangle rectangle est le côté qui est en face de l'angle droit. C'est le plus long des trois côtés du triangle.
Formule : Le théorème de Pythagore énonce que la somme des carrés des longueurs des côtés adjacents est égale au carré de la longueur de l'hypoténuse. Cela se traduit mathématiquement par : a² + b² = c²
Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Le triangle isocèle a deux cotés de même longueur. Le triangle équilatéral a ses trois cotés de même longueur. Le triangle rectangle a un angle droit. Comme le montre le schéma ci-dessous, un triangle a trois côtés, trois sommets et trois angles.
Triangle isocèle
La somme des angles d'un triangle est égale à 180°. On a donc : + + = 180°. Donc + = 180° − 78° = 102°.
La somme des mesures des angles d'un triangle est égale à 180°, donc : = 180 – 115= 65°. Deux angles du triangle sont de même mesure donc ABC est isocèle en A.
Définition : Un triangle isocèle a deux côtés de même longueur. On dit que ABC est isocèle en A. A est appelé le sommet principal du triangle isocèle.
Un triangle scalène a des côtés de longueurs variables. Ils sont inégaux et ses angles sont de trois mesures différentes. Cependant, la somme de ses angles est de 180°, comme tous les triangles.
Théorème de pythagore dans un triangle isocèle
Comment calculer les côtes d'un triangle isocèle quand la mesure l'hypoténuse est égal à 2 ? En fait lorsqu'il s'agit d'un triangle isocèle rectangle la mesure des cotés de l'angle droit est égale à : √2/2 × la mesure de l'hypoténuse.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Dans un triangle rectangle ABC, où l'angle droit est B, l'hypoténuse est donc le côté AC. Pythagore a ainsi théorisé que le carré de la longueur de l'hypoténuse est égal à la somme des carrés des 2 autres côtés (soit dans notre exemple, AC2 = AB2 + BC2).
Théorème de Thalès (appliqué au triangle)
M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.