Deux nombres sont premiers entre eux si leur PGCD est égal à 1. Les diviseurs de 19 sont 1 et 19.
Le nombre de départ est divisible par 19 si et seulement si le résultat final est 19. 6 859 est divisible par 19 car 685 + 2 × 9 = 703, 70 + 2 × 3 = 76 et 7 + 2 × 6 = 19.
Les diviseurs d'un nombre
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Concernant 19, la réponse est : oui, 19 est un nombre premier car il n'a que deux diviseurs distincts : 1 et lui-même (19). Par conséquent, 19 n'est multiple que de 1 et 19.
Les multiples de 3 sont: 6, 9, 12, 15, 18, 21, 24, 27, 30 …
Un entier b est un diviseur d'un autre entier a lorsque le reste de la division euclidienne de a par b vaut zéro. On dit aussi que a est un multiple de b ou que a est divisible par b. Remarque : Quand un nombre vaut zéro, on dit qu'il est nul.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 9) est la suivante : 1, 3, 9. Pour que 9 soit un nombre premier, il aurait fallu que 9 ne soit divisible que par lui-même et par 1.
6 et 3 sont des diviseurs de 18. Remarque 1 : 1 divise tous les nombres entiers et par conséquent, tous les nombres sont leurs propres multiples.
Un diviseur est un nombre avec lequel tu peux diviser un autre nombre en n'ayant pas le reste. Le nombre 20 a donc six diviseurs: 20, 10, 5, 4, 2 et 1.
* Trouver le PGCD(16;25) Les diviseurs de 16 sont 1, 2, 4, 8 et 16 car 16=1×16=2×8=4×4 Les diviseurs de 25 sont 1, 5 et 25 car 25=1×25=5×5 1 est donc le seul diviseur commun de 16 et de 25.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés.
76 est multiple de 4. 76 est multiple de 19.
Un nombre entier est divisible par 9 si la somme de ses chiffres est un multiple de 9 (9 ; 18 ; 27 ; etc.).
Un nombre est divisible par 2 si son chiffre des unités est divisible par 2. C'est à dire que son chiffre des unités doit être égal à 0, 2, 4, 6 ou bien 8. Un nombre est divisible par 5 si son chiffre des unités est divisible par 5. C'est à dire que son chiffre des unités doit être égal à 0 ou bien 5.
Par exemple, l'ensemble des diviseurs de 15 est {1, 3, 5, 15}.
Dans l'opération 12 ÷ 4 = 3, le nombre 4 est le diviseur entier de 12 car le reste de cette division est nul. Les diviseurs entiers (positifs) de 12 sont {1, 2, 3, 4, 6, 12}.
Divisibilité par 11. Un nombre est divisible par 11 si la somme des chiffres situés aux positions paires (654 321) est égale à la somme ses chiffres situés aux positions impaires (654 321) . Ceci fonctionne également si la différence est divisible par 11. On sépare le dernier chiffre du nombre (371) du reste (37).
Un diviseur est un nombre par lequel on peut diviser un autre nombre et obtenir comme résultat un nombre entier.
Soit deux nombres entiers a et b. Si le reste de la division euclidienne de a par b est nul, alors a est divisible par b (et b est un diviseur de a). Par exemple, 28 est divisible par 7 car 28 ÷ 7 = 4.
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
Un nombre A est le multiple d'un nombre B s'il est présent dans la table de multiplication de B, c'est-à-dire si on peut obtenir A en multipliant B par un nombre entier. Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste.
Les diviseurs d'un entier
Un nombre entier est divisible par 2 si son chiffre des unités est 0, 2, 4, 6 ou 8.
Concernant 3, la réponse est : oui, 3 est un nombre premier car il n'a que deux diviseurs distincts : 1 et lui-même (3). Par conséquent, 3 n'est multiple que de 1 et 3.