La variance est, selon la définition classique, la moyenne des carrés des écarts par rapport à la moyenne. En termes plus mathématiques elle peut être considérée comme une mesure servant à caractériser la dispersion d'une distribution ou d'un échantillon.
Nous savons que la variance est une mesure du degré de dispersion d'un ensemble de données. On la calcule en prenant la moyenne de l'écart au carré de chaque nombre par rapport à la moyenne d'un ensemble de données. Pour les nombres 1, 2 et 3, par exemple, la moyenne est 2 et la variance, 0,667.
La variance, habituellement notée s2 ou σ2, est définie comme la moyenne du carré des écarts à la moyenne des valeurs de la distribution. Le calcul de la variance est nécessaire pour calculer l'écart type.
en probabilité, on définit de même la variance de la variable aléatoire X, que l'on note V(X), et l'écart-type σ(X) : la variance est égale à la moyenne des carrés des écarts à l'espérance. Dans ce calcul, on pondère la moyenne par les probabilités (comme on le fait pour le calcul de l'espérance).
Une variance est toujours positive. La valeur d'une variance ne peut être interprétée que par comparaison à la valeur d'une norme ou d'une autre variance. Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci.
Contrairement à l'étendue et à l'écart interquartile, la variance est une mesure qui permet de tenir compte de la dispersion de toutes les valeurs d'un ensemble de données. C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance.
La covariance est légèrement différente. Si la variance permet d'étudier les variations d'une variable par rapport à elle-même, la covariance va permettre d'étudier les variations simultanées de deux variables par rapport à leur moyenne respective.
En termes synthétiques la décomposition de la variance s'énonce variance totale = variance intra + variance inter , ou encore variance totale = moyenne des variances + variance des moyennes .
L'unité dans laquelle s'exprime la variance vaut le carré de l'unité utilisée pour les valeurs observées. Ainsi, par exemple, une série de poids exprimés en kilos possède une variance qui, elle, doit s'interpréter en "kilos-carré".
L'espérance est donc la moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois. - La variance (respectivement l'écart-type) est la variance (respectivement l'écart- type) de la série des xi pondérés par les probabilités pi.
=aE(X)+b.
écart type n. m. Définition : Mesure de la dispersion d'une série d'observations statistiques par rapport à leur moyenne, qui s'obtient en extrayant la racine carrée de la variance.
L'écart-type est dans la même unité de mesure que les données. Même avec peu d'habitude, il est donc assez simple à interpréter. En revanche, la variance a davantage sa place dans les étapes intermédiaires de calcul que dans un rapport.
Un écart type important indique que les données sont dispersées autour de la moyenne. Cela signifie qu'il y a beaucoup de variances dans les données observées. À l'inverse, plus les valeurs sont regroupées autour de la moyenne, plus l'écart type est faible.
Le calcul de la variance peut alors être effectué en recherchant la valeur de σx dans la calculatrice : on tape sur la touche VARS et on choisit l'option 5 : Statistiques. Élever cette valeur au carré pour trouver la variance.
La variance d'une série statistique apparait dans le calcul des coefficients de la régression linéaire. L'analyse de la variance (ANOVA) rassemble des méthodes d'études de comparaisons entre échantillons sur une ou plusieurs variables quantitatives.
Variance positive ou nulle
Quand elle est nulle, cela veut dire que la variable aléatoire correspond à une constante. Toutes les réalisations sont donc identiques.
Non, la variance est toujours positive ou nulle. L'écart type vaut la racine carrée de la variance or on ne peut pas calculer la racine carrée d'un nombre négatif. Bon courage.
Cette formule s'énonce ainsi : la variance est égale à l'espérance du carré de X moins le carré de l'espérance de X.
D'ailleurs, la covariance d'une variable avec elle-même (autocovariance) est tout simplement la variance. Cov(X,X) = V(X). Donc, faisons un parallèle avec le théorème de König : la covariance est la moyenne du produit des valeurs de deux variables moins le produit des deux moyennes.
On appelle écart-type de l'échantillon la racine carrée de la variance. L'avantage de l'écart-type sur la variance est qu'il s'exprime, comme la moyenne, dans la même unité que les données. On utilise parfois le coefficient de variation, qui est le rapport de l'écart-type sur la moyenne.
La covariance est en statistiques une valeur qui permet de connaitre dans quelle mesure les variables d'une série statistique double évoluent ensemble. Comme exemple concret, prenons un anthropologue qui se proposerait d'étudier la relation entre la taille et le poids d'individus appartenant à une même communauté.
La moyenne est calculable pour les variables numériques, qu'elles soient discrètes ou continues. On l'obtient simplement en additionnant l'ensemble des valeurs et en divisant cette somme par le nombre de valeurs. Ce calcul peut être fait à partir des données brutes ou d'un tableau de fréquences.