Une fonction est dérivable sur un intervalle si elle est dérivable en tout point de cet intervalle. L'ensemble des points sur lesquels une fonction est dérivable est son ensemble de dérivabilité. En classe de première, la dérivabilité sur un intervalle est toujours précisée dans l'énoncé des exercices.
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
On peut également étudier la dérivabilité d'une fonction lorsqu'elle est définie sur un intervalle. Si une fonction est dérivable sur un ensemble ouvert ( 𝑎 ; 𝑏 ) , cela signifie que la fonction est dérivable pour tout 𝑥 ∈ ( 𝑎 ; 𝑏 ) .
Théorème fondamental (admis) Soit f une fonction dérivable sur un intervalle I. — Si, pour tout x de I, f (x) ≥ 0 alors f est croissante sur I. — Si, pour tout x de I, f (x) ≤ 0 alors f est décroissante sur I. — Si, pour tout x de I, f (x)=0 alors f est constante sur I.
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
La dérivée, 𝑓 ′ ( 𝑥 ) est positive lorsque la courbe est au-dessus de l'axe des 𝑥 , et est négative lorsque la courbe est sous l'axe des 𝑥 .
Graphiquement, si la fonction est définie mais non dérivable en un point, on observe un point anguleux, c'est-à-dire que le tracé de la courbe est « cassé ». Pourquoi ? Parce que la tangente à gauche du point n'est pas la même qu'à droite.
Graphiquement, la dérivée d'une fonction correspond à la pente de sa droite tangente en un point spécifique. L'illustration qui suit permet de visualiser la droite tangente (en bleu) d'une fonction quelconque en deux points distincts. Remarquez que l'inclinaison de la droite tangente varie d'un point à l'autre.
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
Fonctions composées - Points clés
La composition de deux fonctions dérivables est également une fonction dérivable. La dérivée d'une fonction composée, f ∘ g , se calcule en utilisant la formule ( f ∘ g ) ′ ( x ) = g ′ ( x ) × f ′ ( g ( x ) ) .
Une fonction admet une réciproque si et seulement si sa courbe représentative a un seul point d'intersection avec une parallèle à l'axe des abscisses.
Démonstration : 4)
Soit x = f − 1 ( y ) ; on a x 0 = f − 1 ( y 0 ) et par conséquent. Or est continue, donc quand tend vers y 0 , x = f − 1 ( y ) tend vers x 0 = f − 1 ( y 0 ) et le rapport x − x 0 f ( x ) − f ( x 0 ) a une limite puisque est dérivable en et que sa dérivée f ′ ( x 0 ) est non nulle.
[f(g(x))]' =f'(g(x))&×g'(x). Cette formule permet par exemple de calculer la dérivée de f : x ↦ sin(x²) car f est la composée x ↦ x² suivie de x ↦ sin(x). Créé par Sal Khan.
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
Déterminer l'équation d'une droite graphiquement
Si la droite est croissante (montante) le signe du coefficient directeur est positif et sa valeur est égale au nombre d'unités qu'on monte. Si la droite est décroissante, le signe est négatif.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
La dérivée permet de d'étudier les variations d'une fonction sur son domaine de définition.
Si f est une fonction qui va de [a,b] dans R et si x0∈[a,b], x 0 ∈ [ a , b ] , le taux d'accroissement de f en x0 est la fonction définie, là où c'est possible, par Tx0(h)=f(x0+h)−f(x0)h.
Les fonctions discontinues sont non dérivables en tout point où elles sont discontinues.
La fonction valeur absolue n'est pas dérivable en 0.
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.