L'espérance est donc la moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois. - La variance (respectivement l'écart-type) est la variance (respectivement l'écart- type) de la série des xi pondérés par les probabilités pi.
En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une distribution de probabilité.
La variance est l'écart carré moyen entre chaque donnée et le centre de la distribution représenté par la moyenne.
L'espérance d'une variable aléatoire E(X) correspond à la moyenne des valeurs possibles de X pondérées par les probabilités associées à ces valeurs. C'est un paramètre de position qui correspond au moment d'ordre 1 de la variable aléatoire X. C'est l'équivalent de la moyenne arithmétique ˉX.
lorsque X suit une loi de probabilité "connue" (comme la loi binomiale par exemple), on dispose de formules. Par exemple, si X suit la loi binomiale de paramètres n et p alors l'espérance de X est E(X)=n×p.
Nous savons que la variance est une mesure du degré de dispersion d'un ensemble de données. On la calcule en prenant la moyenne de l'écart au carré de chaque nombre par rapport à la moyenne d'un ensemble de données. Pour les nombres 1, 2 et 3, par exemple, la moyenne est 2 et la variance, 0,667.
L'écart-type s'obtient simplement en calculant la racine carrée de la variance. D'où σ(X)=Var(X) =4,41 =2,1.
La variance est l'espérance des carrés des écarts par rapport à l'espérance. Pour dire les choses plus simplement, V(X) =E((X−E(X)2).
L'espérance sert donc à prévoir la valeur moyenne obtenue pour la variable que l'on mesure si l'expérience est renouvelée un très grand nombre de fois. Elle sert par exemple, en théorie des jeux, à prévoir la somme moyenne que chaque joueur va remporter.
La covariance est légèrement différente. Si la variance permet d'étudier les variations d'une variable par rapport à elle-même, la covariance va permettre d'étudier les variations simultanées de deux variables par rapport à leur moyenne respective.
L'unité dans laquelle s'exprime la variance vaut le carré de l'unité utilisée pour les valeurs observées. Ainsi, par exemple, une série de poids exprimés en kilos possède une variance qui, elle, doit s'interpréter en "kilos-carré".
Variance positive ou nulle
Quand elle est nulle, cela veut dire que la variable aléatoire correspond à une constante. Toutes les réalisations sont donc identiques.
Un écart type important indique que les données sont dispersées autour de la moyenne. Cela signifie qu'il y a beaucoup de variances dans les données observées. À l'inverse, plus les valeurs sont regroupées autour de la moyenne, plus l'écart type est faible.
En termes synthétiques la décomposition de la variance s'énonce variance totale = variance intra + variance inter , ou encore variance totale = moyenne des variances + variance des moyennes .
Non, la variance est toujours positive ou nulle. L'écart type vaut la racine carrée de la variance or on ne peut pas calculer la racine carrée d'un nombre négatif. Bon courage.
L'écart type, habituellement noté s lorsqu'on étudie un échantillon et σ lorsqu'on étudie une population, est défini comme étant une mesure de dispersion des données autour de la moyenne.
Définition 1.6 • L'espérance du couple (X, Y ) est définie si X et Y sont intégrables et on a alors : E(X, Y )=(E(X),E(Y )). cov(X, Y ) = E(XY ) − E(X)E(Y ) = E[(X − E(X))(Y − E(Y ))].
Sentiment de confiance en l'avenir, qui porte à attendre avec confiance la réalisation de ce qu'on désire ; espoir : Vivre dans l'espérance. L'espérance d'un bel avenir.
La loi de Bernoulli permet de démontrer plusieurs résultats concernant les lois binomiales. Soit X une variable aléatoire qui suit une loi de Bernoulli de paramètre p. L'espérance mathématique de X est E(X)=p. La variance de X est V(X)=p(1−p).
Pour calculer la variance d'un échantillon ou la répartition des données de l'échantillon sur la distribution, commencez par additionner tous les points de données puis divisez par le nombre de points de données pour trouver la moyenne.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
L'écart-type est dans la même unité de mesure que les données. Même avec peu d'habitude, il est donc assez simple à interpréter. En revanche, la variance a davantage sa place dans les étapes intermédiaires de calcul que dans un rapport.
Le symbole de l'écart-type se lit sigma. Au pluriel, on écrit : écarts-types et écarts types.