En algèbre générale, un morphisme (ou homomorphisme) est une
Définition : Soit f une application de G dans G′ ; on dit que f est un (homo)morphisme de groupes si, pour tous x et y de G , on a : f(x×y)=f(x)×f(y).
On dit que u est linéaire ou que c'est un morphisme si et seulement si : ∀x, y ∈ E, ∀λ, µ ∈ R, u(λx + µy) = λu(x) + µu(y). Lorsque E = F, un morphisme de E dans lui même s'appelle un endomorphisme. à tout x ∈ E fait correspondre 0F le zéro de F, est une application linéaire (vérification laissée au lecteur).
Définition 2.7 Si un morphisme de groupes f : G → G est bijectif, on dit que c'est un isomor- phisme. Si de plus G = G, on dit que f est un automorphisme de G. On note Aut(G) l'ensemble des automorphismes de G.
Deux espaces vectoriels sont isomorphes lorsqu'on peut trouver une application linéaire et bijective (un isomorphisme) de l'un vers l'autre. On peut considérer que deux espaces isomorphes sont identiques du point de vue de la structure d'espace vectoriel.
En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, par exemple, un endomorphisme d'espace vectoriel E est une application linéaire f : E → E, et un endomorphisme de groupe G est un morphisme de groupes f : G → G, etc.
Si F = K on dit que f est une forme linéaire. Si F = E, f est appelée un endomorphisme. Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K.
Nombres : • (N, +) et (N, ·) ne sont pas des groupes car l'opposé et l'inverse d'un nombre naturel ne sont pas des nombres naturels ; • (Z, +), (Q, +), (R, +) et (C, +) sont des groupes abéliens avec élément neutre = zéro 0 ; • si on note Z∗ = Z \ {0} (et même chose pour Q, R et C), l'ensemble (Z∗, ·) n'est pas un ...
Im f est un sous-groupe de H. Ker f est un sous-groupe de G. f est injective si, et seulement si Ker f = {eG}. f est surjective si, et seulement si Im f = H.
Aide simple. Prendre un vecteur \(u\) quelconque de \(E\), l'écrire dans la base \(B\), calculer son image \(f(u)\), puis traduire l'égalité \(f(u)=0\). Pour l'image de \(f\) consulter la méthodologie.
B = Q − 1 A P . En particuler, si u est un endomorphisme de E , de matrice A dans la base B , de matrice B dans la base B′, et si P est la matrice de passage de B à B′ , alors B=P−1AP.
Une condition nécessaire et suffisante pour qu'une application linéaire de dans soit un automorphisme est que la matrice associée à dans une base quelconque de soit inversible. De plus, si est un automorphisme de et si A = [ f ] B E , la matrice de dans la base est égale à , inverse de la matrice .
(R - {0},×) muni de sa multiplication usuelle est un groupe abélien mais (R - {0},÷) n'est pas un groupe car la division n'est pas associative : (2 ÷ 3) ÷ 4 = 1/6 ≠ 2 ÷ (3 ÷ 4) = 8/3, ni commutative : 5 ÷ 4 = 1,25 ≠ 4 ÷ 5 = 0,8.
En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs.
Deux groupes sont dit isomorphes lorsqu'il existe un morphisme de groupes entre les deux qui est bijectif.
En mathématiques, un isomorphisme entre deux ensembles structurés est une application bijective qui préserve la structure, et dont la réciproque préserve aussi la structure. Plus généralement, en théorie des catégories, un isomorphisme entre deux objets est un morphisme admettant un « morphisme inverse ».
Re: Comment obtenir un isomorphisme
Il suffit de revenir à la définition en décomposant les élements de E et de F dans les deux bases dont tu parles. On appelle (ei)i∈I ( e i ) i ∈ I la base de E en question.
Une application entre deux espaces vectoriels est dite linéaire si elle respecte les deux opérations définissant la structure. . La proposition suivante se démontre facilement, dans le style du théorème 3.
Si deux ensembles sont en bijection, c'est qu'ils ont même cardinal, c'est à dire pour le groupes, même ordre. La contraposée, si deux groupes n'ont pas même ordre, ils ne sont pas en bijection, donc pas d'isomorphisme.
En mathématiques et, en particulier, en topologie, un ensemble Gδ (lire « G delta ») est une intersection dénombrable d'ensembles ouverts. utilisée dans la hiérarchie de Borel.
L'ensemble des nombres entiers, muni de la multiplication (Z, ×), ne forme pas un groupe. La loi est bien interne, associative, et il existe un élément neutre (le nombre 1), mais pas d'inverse en général : par exemple, l'équation 3 · b = 1 n'admet pas de solution dans Z.
un hyperplan H de E est un sous-espace vectoriel maximal (pour la relation d'inclusion)! Si F est un autre sous-espace vectoriel de E avec H⊂F H ⊂ F , alors ou bien F=H , ou bien F=E .
Exercice 2 Soit f ∈ L(E) telle que f3 = f2 + f, montrer que E = kerf ⊕ Imf. −→ y = f (−→x) ∈ Imf ∩kerf, il s'agit de prouver que −→ y = −→ 0 . Ainsi −→ y = −→ 0 . est bien la somme d'un élément de kerf et d'un élément de Imf.
En géométrie, on utilise également la notation −→x . −→y . DÉFINITION 9.2 ♥♥♥ Espace préhilbertien, Espace euclidien Un R-espace vectoriel E muni d'un produit scalaire est appelé un espace préhilbertien réel. Si de plus E est de dimension finie, on dit que E est un espace euclidien.