Giuseppe Peano et Richard Dedekind ont axiomatisé l'arithmétique à la fin du XIX e siècle.
Cette typologie fut l'œuvre de trois mathématiciens de la deuxième moitié du XIXe siècle et du début du XXe siècle : l'Allemand Richard Dedekind (1831-1916), le Russe Georg Cantor (1845-1918) et l'Italien Giuseppe Peano (1858-1932). L'ensemble N vient de l'appellation naturale attribuée à Peano.
L'ensemble des nombres entiers naturels est noté ℕ. Un nombre entier relatif est un nombre entier qui est positif ou négatif. L'ensemble des nombres entiers relatifs est noté ℤ. Un nombre décimal peut s'écrire avec un nombre fini de chiffres après la virgule.
Construction de l'ensemble Z
des entiers naturels, muni de la loi interne addition, est un monoïde commutatif ; donc notre but est simplement de rajouter un opposé (élément symétrique pour l'addition) pour chaque entier non nul. Il ne s'agit pas de rajouter brutalement un élément, il faut aussi définir l'addition.
Selon les acceptions, la liste des entiers naturels est donc : 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; …
Ensemble de tous les entiers
L'axiome de l'infini est nécessaire pour assurer l'existence d'un ensemble contenant tous les entiers naturels. L'intersection de tous les ensembles de ce type (contenant 0 et clos pour l'opération successeur) est alors l'ensemble des entiers naturels.
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
L'ensemble ℤ
C'est l'ensemble des nombres entiers relatifs. Un entier relatif est, non seulement, un entier naturel, mais se présente aussi comme un entier naturel muni d'un signe positif ou négatif. Exemples : …. -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6, +7, +8, etc.
Un nombre entier relatif est un nombre entier qui peut être positif, négatif ou nul. L'ensemble des nombres relatifs se note . (« Z » est l'initiale du mot « Zahl » qui signifie « nombre » en allemand). On dit aussi un entier relatif au lieu de nombre entier relatif.
Z est l'ensemble des nombres entiers relatifs, c'est à dire positifs, négatifs ou nuls. Z∗ (Z étoile) est l' ensemble des entiers relatifs sauf 0 (zéro). L'ensemble N est inclus dans l'ensemble Z (car tous les nombres entiers naturels font partie des entiers relatifs). Tout nombre dans N est aussi dans Z.
Les nombres naturels, représentés par N , regroupent tous les nombres entiers compris entre 0 inclusivement et l'infini positif. On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble.
Les nombres réels et les ensembles de nombres
On note R∗ l'ensemble des nombres réels dont on a enlevé le nombre 0 . On note R+ l'ensemble des nombres réels positifs. On note R− l'ensemble des nombres réels négatifs.
Grand N est actuellement une revue Interface reconnue par l'HCERES.
9999 est le plus grand nombre entier ( naturel ) à 4 chiffres !
En 1899, David Hilbert donne la première définition axiomatique du corps des nombres réels.
Par exemple 1/2, 12,45 et 0,415464 sont des nombres décimaux. Par contre, le nombre 1/3 = 0,3333333... n'est pas décimal, puisque qu'il a une infinité de 3 après la virgule.
Nombre entier (c'est-à-dire ne possédant pas de décimales) précédé d'un signe positif ou négatif. Si aucun signe n'est précisé, cela sous-entend que le nombre est positif. L'ensemble des entiers relatifs a pour symbole un z ajouré ou un Z majuscule. Exemple : -10, -5, 0, +5, +10 sont des nombres entiers relatifs.
Les nombres entiers sont les nombres qui ne possèdent pas de chiffre après la virgule. Les nombres entiers permettent de compter. 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; etc.
Définition : Les entiers naturels sont les nombres entiers positifs. Exemples : 0 ; 1 ; 2 ; 12 ; 33 ; 2008 sont des entiers naturels.
Parmi l'ensemble des nombres négatifs et positifs, y compris le zéro, un nombre entier est un nombre sans élément décimal ou fractionnaire, tel que -5, 0, 1, 5, 8, 97 et 3043.
√2 et π sont des exemples de nombres qui ne peuvent pas s'exprimer sous la forme ab et dont le développement décimal est infini et non-périodique. Il ne font donc pas partie de l'ensemble des nombres rationnels. Ce sont des nombres irrationnels.
Il faut savoir que des mathématiciens sont allés encore plus loin. Ils ont nommé un nombre encore plus grand : le "Googolplex", c'est un 1 suivi d'un googol de zéros, un nombre si immense qu'il y a davantage de zéros dans l'écriture de ce nombre que d'atomes dans l'univers.
Nombre de chiffres de 4
4 est un nombre à un seul chiffre, puisqu'il est strictement inférieur à 10 ; 4 est d'ailleurs lui-même un chiffre.
Le nombre 11 (onze) est l'entier naturel qui suit 10 et qui précède 12.