Le début d'une véritable théorie des équations est généralement attribué à Viète, mathématicien français de la fin du XVI e siècle.
L'Équation de Navier-Stoke.
Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables. Résoudre l'équation consiste à déterminer les valeurs que peut prendre la variable pour rendre l'égalité vraie.
Le terme œquatio differentialis ou équation différentielle est apparu pour la première fois sous la plume de Leibniz1 en 1676 pour définir la relation entre les différentielles dx et dy des deux variables x et y.
Les équations du second degré ont été étudiées systématiquement par Al-Khwarizmi au IX e siècle, dans un ouvrage intitulé Abrégé du calcul par la restauration et la comparaison qui, via le mot « restauration » (en arabe : al-jabr) a donné son nom à l'algèbre.
Si Δ = 0 alors l' équation admet une solution double x = −b/2a. Si Δ >0 alors l' équation admet deux solutions distinctes x' et x' telles que: x' =( −b + √Δ ) / 2a et x'' =(
➔ Le nombre Δ = b2 - 4ac est appelé discriminant de l'équation (appellation due à Sylvester en 1851, du latin discrimen = séparation) : l'étude de son signe permet de conclure quant au nombre et aux valeurs des racines de l'équation.
Une équation différentielle du premier ordre est une équation dont l'inconnue est une fonction, et où intervient la dérivée de cette fonction. Dans ce cours l'inconnue sera une fonction y de la variable t , et sa dérivée sera donc notée y ′ .
Une équation différentielle est une équation qui établit un lien entre une fonction et une ou plusieurs de ses dérivées. Ce qui veut dire que la solution d'une équation différentielle est une fonction !
Ces équations différentielles sont utiles, car elles interviennent dans la modélisation de phénomènes très vastes allant de la dynamique des populations à la prédiction de la fonte des banquises. Elles sont impliquées dans beaucoup de phénomènes qui nous entourent comme la météo ou l'effet papillon.
Une équation est une égalité où les valeurs d'un ou de plusieurs nombres sont inconnues. Ces valeurs inconnues sont remplacées par des lettres. Par exemple, x + 2 = 6 x + 2 = 6 x+2=6x, plus, 2, equals, 6 est une équation.
Équation qui n'admet aucune solution dans son ensemble de définition.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
L'identité d'Euler
Parce qu'elle utilise 3 des opérations fondamentales en arithmétique : l'addition, la multiplication et l'exponentiation. L'identité d'Euler est considérée comme la plus belle formule mathématique.
La question « P = NP ? » signifie à peu près : « Ce que nous pouvons trouver rapidement lorsque nous avons de la chance, peut-il être trouvé aussi vite par un calcul intelligent ? ». Très sommairement, « l'intelligence peut-elle remplacer la chance ? »
Si f est une fonction dérivable sur un intervalle contenant un réel a, la tangente à la courbe représentative de f au point d'abscisse a a pour équation: y = f(a) + f′(a)(x - a) .
La fonction g est solution de l'équation différentielle y' = ay + b. Les solutions de l'équation différentielle y' = ay + b, où a et b sont deux réels et , sont les fonctions de la forme où u(x) est la solution particulière constante de l'équation y' = ay + b et v(x) est une solution quelconque de l'équation y' = ay.
z ′ = ( 2 a ( t ) y 0 ( t ) + b ( t ) ) z + a ( t ) z 2 . On obtient donc une équation de Bernoulli, que l'on sait résoudre. Il s'agit des équations différentielles du type y=a(y′)t+b(y′). y = a ( y ′ ) t + b ( y ′ ) .
Résoudre une telle équation différentielle, c'est trouver toutes les fonctions dérivables y définies sur I à valeurs dans R ou C vérifiant, pour tout x∈I x ∈ I , y′(x)+a(x)y(x)=b(x) y ′ ( x ) + a ( x ) y ( x ) = b ( x ) . Dans la suite, on supposera toujours que a,b sont continues sur I .
S'interroger sur les paramètres qui influent sur la dérivée d'une grandeur physique, c'est chercher à établir une équation différentielle. La résoudre permet d'anticiper l'évolution d'un système. La mise en place d'une méthode numérique itérative permet de mieux ancrer l'idée du déterminisme et de la causalité.
Définition : Une équation différentielle est une équation où l'inconnue est une fonction, et qui se présente sous la forme d'une relation entre cette fonction et ses dérivées. Ex : y^'+ay=0 avec a réel est une équation différentielle. f est une solution de l'équation différentielle.
Calcul du discriminant : ∆ = b2 −4ac = ( √2)2 −4(1)(1) = −2. Le discriminant est strictement négatif, la règle est donc "toujours du signe de a", c'est à dire toujours positif car a = 1.
Si Δ est strictement positif, alors il y a deux solutions réelles à l'équation du second degré. Si Δ = 0 , alors il y a une solution réelle (répétée). Et si Δ est strictement négatif, alors il n'y a pas de solutions réelles.
De façon générale, pour résoudre une équation de la forme P ( x ) = 0 où P est un polynôme (réel ou complexe), si on peut factoriser P , on peut se ramener à une équation à produit nul avec des facteurs polynomiaux de degré strictement inférieur.