1783 : dans le cadre de la théorie corpusculaire de la lumière, John Michell énonce la première notion de trou noir newtonien (en se servant des lois de Newton de la gravitation).
« Trou noir » est un terme inventé par le physicien américain John Wheeler en 1967, pour décrire une concentration de masse/énergie si compacte que même les photons ne peuvent se soustraire à sa force gravitationnelle. Découvrez ici l'histoire du trou noir.
Ce phénomène a pu être remarqué et analysé grâce à la détection d'une très forte émission de lumière dont l'émetteur se situait en périphérie d'une galaxie lointaine. Cette émission de lumière est justement la manifestation d'une étoile qui se serait un peu trop approchée du trou noir et se serait faite happer.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
Un quasar est composé de trois grandes parties principales : le trou noir supermassif ,comportant la quasi-totalité de la masse du quasar (de quelques millions à quelques dizaines de milliards de fois la masse du Soleil).
Le trou noir qui se trouve au centre de notre galaxie, la Voie lactée, s'appelle Sagittarius A*.
Le trou noir M87* a une masse de l'ordre de 6,5 × 109 masses solaires et un rayon de 19 milliards de kilomètres ; son diamètre est donc de 38 milliards de kilomètres, ou 35 heures-lumière ; comme il est situé à 53,5 millions d'années-lumière de la Terre, son diamètre apparent serait de 15,5 μas (microsecondes d'arc).
Alors qu'en 1905 il avait démontré qu'une horloge embarquée dans un véhicule en mouvement « retardera » par rapport à celle restée immobile, en 1915, il prédisait que, tout comme la vitesse, le champ gravitationnel généré par un corps massif ralentissait les horloges ; et cela d'autant plus que l'horloge était proche ...
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Généralement, un trou noir absorbe toute la matière qui s'approche "trop près" de lui. A l'heure actuelle, plusieurs théories sont proposées pour expliquer ce que devient cette matière: → Certains scientifiques émettent l'hypothèse que toute la matière absorbée passe dans un autre univers que le nôtre.
Quand vous levez les yeux vers le ciel, toutes les étoiles que vous voyez appartiennent à la Voie lactée, la galaxie spirale à laquelle nous appartenons.
Il y a les trous noirs dits « supermassifs » comme celui qui se trouve au centre de notre galaxie, à une distance de 26 000 années-lumière de la Terre. Ils sont appelés ainsi en raison de leur masse de l'ordre d'un million de masses solaires ou plus.
Il existe deux types de trous noirs : ⭐ Les trous noirs supermassifs sont les plus grands de tous les trous noirs. Leur masse est jusqu'à Par exemple, le trou noir qui est au centre de notre galaxie, la Voie Lactée, est un trou noir supermassif.
On estime ainsi que les trous noirs résidus d'étoiles disparaîtront d'ici 1065 ans (le chiffre 1 suivi de 65 zéros), les trous noirs supermassifs dans 1090 ans et les plus massifs dans 10100 ans.
La découverte des trous noirs
Pour la Terre, cette vitesse de libération est de 11,2 kilomètres par seconde, soit dans les 40 000 km/h. La vitesse de libération augmente avec la masse du corps et diminue avec son rayon.
La relativité générale montre que le rayon de Schwarzschild d'un trou noir est proportionnel à sa masse, donc que le volume d'un trou noir est proportionnel au cube de sa masse.
Surnommé « la Licorne », cet étrange objet stellaire semble être le plus petit trou noir jamais découvert. Il pourrait aider les astrophysiciens à résoudre l'un des plus grands mystères de l'univers. À près de 1 500 années-lumière de la Terre, un petit trou noir orbite autour d'une étoile géante.
Un trou noir incroyablement lumineux dans l'Univers
L'activité de ce trou noir, baptisé J1144, est si frénétique qu'elle envoie une lumière à plusieurs longueurs d'onde flamboyantes à travers l'Univers : c'est ce que l'on appelle un quasar.
VY Canis Majoris a été détrônée par une autre supergéante rouge : UY Scuti (à 9.500 années-lumière dans la constellation de l'Écu de Sobieski) ; 1.700 fois plus grande que le Soleil, elle pourrait s'étendre jusqu'à Saturne si on la mettait au centre du Système solaire !
Un article paru en janvier 2011 dans la revue Physical Review arrive à la conclusion que le temps va s'arrêter d'ici 5 milliards d'années. Pour arriver à cette conclusion, les chercheurs ont étudié les implications de la théorie de l'inflation éternelle et l'existence de multivers associée à cette théorie.
Le moustique : incontestablement le plus dangereux
Le moustique est véritablement l'ennemi numéro 1 de l'homme car il tue à lui seul près de 750 000 personnes dans le monde chaque année. Ce n'est pas tant l'animal en soi qui tue que les virus qu'il transmet en piquant ses victimes.
Ainsi, l'Univers observable forme une sorte de sphère autour de nous, mais le bord de cette sphère ne marque pas la fin de l'Univers, il marque juste la zone qui n'est pas encore observable pour nous.
Le système solaire est constitué d'une étoile, le Soleil, autour de laquelle gravitent huit planètes, leurs satellites, des planètes naines et des milliards de petits corps (astéroïdes, comètes, poussières etc.)
L'objet primaire du système est l'étoile centrale, nommée Proxima Centauri (latin pour « [l'étoile] du Centaure la plus proche »), en français Proxima du Centaure, ou encore simplement Proxima, car il s'agit de l'étoile la plus proche de la Terre après le Soleil.