Le théorème de Pythagore s'applique aux triangles rectangles.
En quelle classe apprend-on le théorème de Pythagore ? C'est en 4e qu'on aborde le théorème de Pythagore. Cependant, la plupart des élèves de collège en ont déjà entendu parler avant, car c'est un cours qui a souvent marqué leurs parents.
Celle de l'école pythagoricienne couvre tous les domaines : « la science relative aux intelligibles et aux dieux ; ensuite la physique ; la philosophie éthique et la logique ; toutes sortes de connaissances en mathématiques et les sciences ».
Le théorème de Pythagore est un puissant outil permettant de calculer une longueur manquante dans un triangle rectangle. Réciproque du Théorème : Si le carré du plus grand côté d'un triangle est égal à la somme des carrés des deux autres côtés, alors ce triangle est rectangle.
Le théorème pourra s'appliquer seulement dans deux cas (voir le schéma ci-dessous) : Deux droites sécantes et deux droites parallèles viennent former deux triangles distincts, reliés entre eux par un sommet.
Avec la reciproque de Thalès on peut savoir si les deux droites sont parallèles. Mais seulement si les cotes des triangles sont proportinnels deux a deux. Pythagore ce n'est qu'avec un triangle rectangle, il sert a connaitre la mesure d'un côté.
Le théorème de Thalès permet donc de calculer des distances dans une configuration géométrique comportant des droites parallèles. Ce théorème implique donc qu'il ne peut pas être utilisé pour les triangles rectangles. Si un triangle est rectangle, c'est qu'il ne possède pas de droites parallèles.
Pythagore est bien connu pour le théorème de géométrie qui porte son nom : le théorème de Pythagore, qui a pour principe : "dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés".
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
La relation de Pythagore met en relation les trois côtés du triangle rectangle de la manière suivante : La somme des carrés des mesures des cathètes est égal au carré de la mesure de l'hypoténuse.
En occident on considère souvent Thalès et Diophante comme pères respectivement de la géométrie et de l'algèbre. Mais il faut bien considérer que les mathématiques sont une science éminemment collective, aussi est-il impossible aujourd'hui de connaître l'apport réel à la science de ces deux personnages.
Si, d'après l'étymologie, la philosophie est l'« amour de la sagesse », elle en est aussi la quête. C'est Pythagore le premier qui donna au mot philosophie ce sens précis de recherche de la sagesse. C'est également lui qui inventa le terme « philosophe ».
C'est Archimède, un mathématicien grec vivant à Syracuse, qui le premier démontre vers 250 avant J. -C. les formules du cercle et que c'est bien la même constante Pi qui intervient dans le calcul de la circonférence et celui de la surface.
Le « dernier théorème de Fermat » (ou « grand théorème de Fermat », ou « théorème de Fermat-Wiles ») affirme que si n est un entier supérieur à 2, alors il n'existe pas de triplets d'entiers positifs x, y, z tels que xn + yn = zn. Il est considéré comme démontré depuis 1995.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Règles de l'enseignement
D'après une indication de Jamblique qui remonterait à Aristote, l'enseignement pythagoricien a pu ainsi être divisé en deux parties : une partie pour les « acousmaticiens », (άκουσματικοί), les non encore initiés, et une pour les initiés, les « mathématiciens ».
Dans un triangle rectangle, la somme des carrés des côtés de l'angle droit est égale à l'hypoténuse au carré. L'égalité BC² =AB² + AC² s'appelle l'égalité de Pythagore. Attention : Le théorème de Pythagore ne s'applique qu'aux triangles rectangles.
[AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2. Alors AC2 = BC2 − AB2 ou encore AC2 = 18,752−152. Donc AC2 = 126,5625, soit AC = 11,25 cm.
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A. D'une part, BC^2=5^2=25. D'autre part, AB^2+AC^2=3^2+4^2=9+16=25.
C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
"Tout est nombre" : telle était la devise de l'école pythagoricienne qui proclamait que les dieux avaient ordonné l'univers par des nombres. Ce voyage dans le passé permet de comprendre qu'avec des cailloux, de nombreux résultats mathématiques furent énoncés.
Il doit son nom à Pythagore de Samos, philosophe de la Grèce antique du VI e siècle av. J. -C. , cependant le résultat était connu plus de mille ans auparavant en Mésopotamie et a vraisemblablement été découvert indépendamment dans plusieurs autres cultures.
En pratique, le théorème de Thalès permet de calculer des rapports de longueur et de mettre en évidence des relations de proportionnalité en présence de parallélisme.
Définition : On appelle triangles semblables des triangles qui ont des angles deux à deux égaux. Exemple : Les triangles ABC et DEF sont semblables, en effet : ABC !
Thalès, le fondateur de cette sorte de philosophie [l'étude de la nature], affirme que c'est l'eau [le principe premier] ; c'est pourquoi aussi il a déclaré que la terre flotte sur l'eau, conception qu'il tirait peut-être de la constatation que la nourriture de toutes choses est humide, que le chaud même en naît et en ...