Au centre d'un trou noir se situe une région dans laquelle le
Un trou noir n'a rien d'un trou
Son nom est trompeur, le trou noir n'a rien d'un trou ! Il provient de la mort d'une étoile, mais seulement d'une étoile suffisamment massive (plusieurs fois la masse du Soleil).
Où va ce qui entre dans un trou noir ? La matière qui entre dans le trou noir se retrouverait comprimée dans un même point central, une singularité gravitationnelle. Nos conceptions du temps et de l'espace s'effondrent dans cette singularité.
Il s'appelle Chuck Clark et il est l'un des meilleurs cosmonautes de la Nasa, l'organisme responsable de la recherche spatiale aux Etats-Unis. Dans 5 ans, cet Américain de 32 ans va vivre une aventure incroyable et très risquée : il s'est porté volontaire pour être le 1er homme à entrer à l'intérieur d'un trou noir !
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
La relativité générale estime que rien ne peut sortir d'un trou noir, pas même l'information concernant la matière aspirée. Cette opposition de lois physiques concernant les trous noirs, mise évidence par Hawking, porte le nom de "paradoxe de l'information".
Le trou noir est tellement massif qu'il déforme l'espace-temps. Quand la lumière passe à côté, au lieu d'aller sur une ligne droite, elle va être courbée. C'est ce qu'appelle une géodésique de l'espace -temps. Plus le trou noir est compact, plus il est massif, plus la trajectoire de la lumière va être déviée.
Une autre caractéristique est l'effet d'entraînement sur l'espace-temps. En effet, l'influence du trou noir sur la géométrie de l'espace-temps est très forte. La rotation de l'astre doit se répercuter sur cette géométrie, donc également sur le mouvement des corps passant à proximité.
Une horloge avancerait à un rythme plus lent. En quelque sorte, donc, les trous noirs ralentissent le temps. Cet effet est tellement important que, si notre observateur lance un objet dans la direction du trou noir, il ne le verra jamais pénétrer à l'intérieur du trou noir.
Il se trouve que les trous noirs ne sont pas si effrayants. Ils n'ont aucun pouvoir particulier de « succion » qui leur permettrait d'avaler de la matière. Leur seule force d'attraction vient de la bonne vieille gravité, cette même force qui maintient la Lune en orbite et qui nous colle à la Terre.
Température. Plus un trou noir est massif, plus il est froid. Les trous noirs stellaires sont très froids : leur température s'approche du zéro absolu (0 kelvin ou −273,15 degrés Celsius).
Grâce au télescope Hubble, un trou noir vient d'être découvert à quelques encablures de notre planète après douze années de recherche. Situé à seulement 6.000 années-lumière de la Terre, il a été repéré au cœur de Messier 4, un amas globulaire dans la constellation du Scorpion.
Le premier trou noir fut détecté en 1971 dans la constellation du Cygne. En 1974, Bruce Balick et Robert L. Brown détectent un astre extrêmement massif au centre de la Voie Lactée qu'ils baptisent Sagittarius A*. Il a fallu attendre la fin des années 1990 pour que sa nature de trou noir supermassif soit prouvée.
Un trou blanc, que l'on appelle aussi fontaine blanche, serait, en quelque sorte, le contraire d'un trou noir : si un trou noir est un endroit de l'espace où la matière est attirée, et disparaît, un trou blanc, serait, au contraire, un endroit où la matière « apparaîtrait », et d'où elle jaillirait, un peu à la manière ...
Pour un trou noir de 5 km de rayon et environ 5 M , les forces de marée varient de 1/16 g à 15 g entre 100000 km et 20000 km de l'horizon des évènements. Cette accélération est encore plus élevée pour les trous noirs plus petits.
À l'intérieur des trous noirs et autour d'eux, le champ gravitationnel est tellement puissant que rien ne parvient à s'échapper, ni même la lumière. Cela signifie que les trous noirs n'émettent aucune onde lumineuse et n'ont donc aucune couleur.
Généralement, les trous noirs sont considérés comme sphériques. Et si un corps massif non sphérique venait à s'effondrer, quel serait le résultat ?
Une libération impossible
En appliquant la formule ci-dessus, vous pouvez calculer que sa vitesse de libération serait égale à environ 650000 km/s.
Rayonnement de Hawking
Dans le cas de l'effet Hawking, à l'horizon d'un trou noir, les forces de marée engendrées par le champ gravitationnel du trou noir peuvent éloigner la particule de son antiparticule avant qu'elles ne s'annihilent.
Toutefois, jusqu'à il y a peu, ils n'avaient jamais repéré de petits trous noirs, un véritable mystère astrophysique depuis de nombreuses années. Mais voilà, les astronomes ont découvert un trou noir dont la masse n'équivaut qu'à trois fois celle du Soleil, ce qui en fait le plus petit connu à ce jour.
Un trou blanc (ou fontaine blanche) est un objet hypothétique qui comme son nom l'indique est l'opposé du trou noir. En effet, tandis qu'en théorie rien ne peut s'échapper d'un trou noir, d'après les cosmologistes, rien ne peut pénétrer dans un trou blanc. De la matière et de l'énergie en sont éjectés en permanence.
De la difficulté de détecter le rayonnement de Hawking
Le trou noir s'évapore avec une température de rayonnement inversement proportionnelle à sa masse, ce qui fait que l'évaporation est d'autant plus rapide que le trou noir est petit.