Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Enfin, la tangente est le rapport entre le sinus et le cosinus, ce qui revient à faire le rapport entre le côté opposé à l'angle et le côté adjacent à l'angle.
CASH : Cosinus = Adjacent Sur Hypoténuse ; tan = COCA = Côté Opposé / Côté Adjacent ; CAH - SOH - TOA ("Casse-toi !") : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent.
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
La loi des sinus permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Pour ce faire, il faut connaitre la mesure d'un angle, de son côté opposé et d'un autre côté ou d'un autre angle.
tan(angle) = (côté opposé à l'angle) divisé par (côté adjacent à l'angle). et il faut savoir se repérer par rapport à un angle aigu pour distinguer côté adjacent et côté opposé à l'angle : Pour l'hypoténuse, quel que soit l'angle aigu considéré, c'est toujours le côté opposé à l'angle droit, et le plus grand côté.
La fonction cosinus est utilisée couramment pour modéliser des phénomènes périodiques comme les ondes sonores ou lumineuses ou encore les variations de température au cours de l'année.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Définition du rapport tangente
Dans un triangle rectangle, la tangente d'un angle, notée tanθ est le rapport de la mesure du côté opposé à l'angle θ et du côté adjacent à ce même angle.
Jacques OZANAM (1640 - 1718) dans son traité de trigo de 1697 parle encore de sinus de complément et dresse la table des sinus et tangente seulement. Le mot COSINUS est né dans le texte en France entre OZANAM-1697 et BELIDOR-1725.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
À chaque angle, on associe 4 grandeurs appelées nombres trigonométriques : le sinus, le cosinus, la tangente et la cotangente. Les définitions suivantes constituent une extension du sinus, cosinus et de la tangente d'un angle aigu d'un triangle rectangle.
Formules fondamentales :
tg x = sin x / cos x. cotg x = cos x / sin x. 1 + tg² x = 1 / cos² x. 1 + cotg² x = 1 / sin² x.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
La valeur exacte de cos(45°) cos ( 45 ° ) est √22 .
La valeur exacte de sin(45) est √22 .
On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
Alors je peux tout simplement te dire : tu utilises le cosinus, le sinus ou la tangente quand tu as les données pour pouvoir les calculer (i.e soit le côté adjacent et l'hypoténuse, soit le côté opposé et l'hypoténuse, soit le côté adjacent et le côté opposé).
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
La tangente comme quotient
cos A ^ = A B A C sin A ^ = B C A C tan A ^ = B C A B .
Définition : (sinus, cosinus et tangente)
Le cosinus de l'angle est le rapport des longueurs du côté adjacent à cet angle et de l'hypoténuse. La tangente de l'angle est le rapport des longueurs du côtés opposé et adjacent à cet angle et de l'hypoténuse.
Le côté opposé à un angle est celui qui est en face de cet angle. Celui des deux côtés d'un angle aigu qui est le côté adjacent est celui qui n'est pas l'hypoténuse.