Le dihydrogène est la forme moléculaire de l'élément hydrogène qui existe à l'état gazeux aux conditions normales de température et de pression. La molécule comporte deux atomes d'hydrogène ; sa formule chimique est H₂.
L'hydrogène (H) est un gaz très léger dont la formule chimique est H2. Très inflammable, il est inodore, incolore, non toxique et non corrosif.
Le dihydrogène est la forme moléculaire de l'élément hydrogène qui existe à l'état gazeux aux conditions normales de température et de pression. La molécule comporte deux atomes d'hydrogène ; sa formule chimique est H2.
L'hydrogène est un gaz très léger qui peut se stocker et être un moyen efficace de pallier l'intermittence des énergies renouvelables en stockant l'électricité produite sur des durées longues. Malgré sa rareté à l'état naturel, l'hydrogène est très abondant sur terre sous forme atomique, notamment dans l'eau.
Si elle est soumise à un courant électrique, la molécule d'eau se départit de sa cohésion. H2O devient un ion hydroxyde (OH)- et un proton H+. Mis côte à côte, les protons réagissent entre eux et donnent du dihydrogène (H2).
On le trouve dans la composition du Soleil, des étoiles, des planètes gazeuses. Sur notre planète, on a noté quelques émanations d'hydrogène naturel, mais non exploitables en quantités significatives et à des coûts compétitifs.
L'hydrogène est inodore, incolore et insipide, de sorte que les fuites sont difficiles à détecter par les seuls sens humains. L'hydrogène n'est pas toxique, mais dans les environnements intérieurs comme les salles de stockage des batteries, l'hydrogène peut s'accumuler et provoquer une asphyxie en remplaçant l'oxygène.
Actuellement, l'hydrogène a deux utilisations principales : d'une part, il sert de matière de base pour la production d'ammoniac (engrais) et de méthanol ; d'autre part, il est utilisé comme réactif dans les procédés de raffinage des bruts en produits pétroliers, carburants et biocarburants.
L'hydrogène vert, produit principalement par électrolyse de l'eau à partir d'électricité renouvelable, représente un des leviers d'avenir pour accélérer la transition vers la neutralité carbone : développement de la mobilité verte, décarbonation des usages massifs industriels d'hydrogène (engrais, raffinerie, chimie…), ...
Le sultanat d'Oman et les Philippines sont les cas les plus étudiés mais des émanations d'hydrogène ont aussi été notées en Nouvelle-Calédonie ou même dans les Pyrénées. Cette industrie, comme celle de toutes les autres ressources naturelles, ne peut démarrer qu'à terre.
Ce procédé consiste, en résumé, à injecter un courant électrique dans l'eau, de manière à dissocier les atomes d'oxygène et d'hydrogène. Ces atomes d'hydrogène sont ensuite récupérés et stockés. L'hydrogène peut être transformé à nouveau en électricité propre grâce à la pile à combustible.
L'hydrogène vert est formé via l'électrolyse de l'eau, dont l'électricité est issue des énergies renouvelables. Cet hydrogène propre ne rejette que de l'oxygène. Malheureusement, il n'est produit qu'à très petite échelle (seulement 1 % de la production totale).
Aujourd'hui, pour des raisons économiques, 95 % de l'hydrogène est produit à partir de sources fossiles : par reformage de gaz naturel notamment ou par gazéification de charbon de bois. Des procédés a priori émetteurs de CO2. Cet hydrogène ne peut donc pas être considéré comme propre.
Aujourd'hui, l'hydrogène est quasi exclusivement utilisé dans l'industrie en particulier l'industrie chimique et le raffinage.
Comment fonctionne concrètement le véhicule à pile à combustible à hydrogène ? Leur énergie électrique est fournie par une pile à combustible. L'hydrogène est stocké sous pression dans les réservoirs dédiés du véhicule. Ce gaz (H2), ainsi que le dioxygène (O2) de l'air ambiant, alimente la pile à combustible.
Hynamics : le pôle hydrogène d'EDF
Hynamics est le producteur d'hydrogène du groupe EDF. Hynamics produit ainsi de l'hydrogène « vert » obtenu par électrolyse de l'eau, une technique qui n'utilise pas d'énergies fossiles.
La raison pour laquelle l'hydrogène est inefficace est due au processus de transfert d'énergie nécessaire pour alimenter une voiture. C'est ce qu'on appelle parfois la transition du vecteur énergétique.
Mais l'hydrogène n'est pas une solution miracle du point de vue écologique. Il génère des pollutions, et son faible rendement le rend peu avantageux pour les usages où l'électricité peut déjà remplacer les énergies fossiles.
L'Agence internationale de l'énergie (AIE) a assuré dans un rapport qui date déjà de 2019 que l'hydrogène est une énergie d'avenir. En effet, grâce à son faible rejet de CO2 cette énergie paraît être une alternative crédible. Effectivement associée à une pile à combustible, cette énergie ne rejette pas de CO2.
Ça c'est en sortie d'unité de production. Donc avec le coût d'exploitation de la station qui s'y ajoute, l'hydrogène est vendu généralement entre 10 et 15 € / kilo. On aime bien 10 €/ kilo parce que ça fait quasiment la parité avec le diesel.
Avec des procédés d'électrolyse industrielle, il faut aujourd'hui 1 l d'eau et 5 kWh d'électricité pour fabriquer 1 000 l d'hydrogène sous forme de gaz à la pression atmosphérique. Il faut ensuite comprimer ce gaz à 700 bars pour une utilisation automobile.
Avec un rendement global autour de 30%, cela signifie que la production d'hydrogène pour une voiture pollue au moins 3 fois plus que l'électricité qui a servi à le produire. Ce qui n'est donc pas négligeable.
L'un des inconvénients de la voiture hydrogène vient de la production de l'hydrogène. Quelle que soit la méthode utilisée, d'importantes quantités d'énergie sont nécessaires pour produire ce gaz.
Sur une voiture à hydrogène, l'autonomie n'est pas un réel problème. Si l'offre reste encore limitée, les modèles aujourd'hui commercialisés peuvent parcourir plus de 500 à 600 km avec un plein.