La médiane est le point milieu d'un jeu de données, de sorte que 50 % des unités ont une valeur inférieure ou égale à la médiane et 50 % des unités ont une valeur supérieure ou égale.
Dans son sens le plus courant, une médiane désigne, dans un triangle, une droite joignant un des trois sommets du triangle au milieu du côté opposé. Par extension, en géométrie plane, les médianes d'un quadrilatère sont les segments reliant les milieux de deux côtés opposés.
La médiane est la mesure de tendance centrale qui indique le centre de la série de données. En d'autres mots, c'est la valeur qui sépare une distribution ordonnée en deux groupes qui contiennent le même nombre de données.
Méthode avec une règle
À l'aide de la règle, mesurer le segment que l'on veut séparer en deux parties égales. Diviser la valeur de la mesure du segment en deux et l'indiquer sur le segment. Tracer le segment partant du sommet A jusqu'au point dessiné à l'étape 2. Cette droite est la médiane du triangle.
Une diagonale d'un quadrilatère est un segment de droite qui relie deux sommets opposés. Une médiane d'un quadrilatère est un segment de droite qui relie les milieux de deux côtés opposés.
Tout point situé sur la médiatrice d'un segment se trouve à égale distance de chacune des extrémités de ce segment. C'est pourquoi les sommets du triangle se trouvent tous sur un même cercle. C'est la droite qui coupe un angle en deux angles égaux.
Les médianes
La médiane d'un triangle relie un sommet au milieu du côté opposé. Dans un triangle, il y a trois médianes. Leur point d'intersection correspond au centre de gravité du triangle.
Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant. Si le nombre de valeurs est un nombre impair, il faut lui additionner 1, puis le diviser par 2 pour obtenir le rang qui correspondra à la médiane.
La moyenne est calculée comme la somme des valeurs d'une série divisée par le nombre de valeurs dans cette série. La médiane divise, quant à elle, la série étudiée en deux groupes égaux.
Les médianes d'un triangle sont concourantes (elles se coupent en un même point). Leur point d'intersection est le centre de gravité. Le centre de gravité est situé aux deux tiers d'une médiane en partant du sommet dont elle est issue.
La médiane est fréquemment utilisée pour analyser la répartition des revenus : le revenu « médian » des ménages les sépare en deux, autant gagnent davantage, autant gagnent moins. La valeur médiane est aussi l'équivalent du cinquième décile.
La médiane est principalement utilisée pour les distributions asymétriques, car elle les représente mieux que la moyenne arithmétique. Considérons l'ensemble { 1, 2, 2, 2, 3, 9 }. La médiane est 2, tout comme le mode, ce qui est une meilleure mesure de tendance centrale que la moyenne arithmétique égale à 3,166….
Pour calculer la médiane : On classe les valeurs de la série statistique dans l'ordre croissant : Si le nombre de valeurs est impair, la médiane est la valeur du milieu. S'il est pair, la médiane est la demi-somme des deux valeurs du milieu.
Théorème de la médiane — Dans un triangle rectangle, la longueur de la médiane issue du sommet de l'angle droit vaut la moitié de la longueur de l'hypoténuse.
Médiane : droite joignant le sommet d'un triangle au milieu du côté opposé. Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Comme les trois hauteurs, les trois médianes d'un triangle sont concourantes. On trace la droite passant par B et par le milieu de \left[ AC \right] ainsi que la droite passant par C et par le milieu du segment \left[ AB \right]. On obtient les trois médianes.
La valeur médiane d'une série statistique est le point milieu de la série ordonnée. La médiane correspond à une valeur telle que 50% des valeurs de la série lui sont inférieures ou égales et 50% des valeurs de la série lui sont supérieures ou égales.
Ceci rend d'ailleurs possible son calcul lorsque seules sont connues les valeurs de la zone centrale. La valeur de la médiane rapprochée des autres caractéristiques de valeur centrale permet de préciser la forme de la distribution.
1.1) Les indicateurs de tendance centrale
Les indicateurs de tendance centrale comme la moyenne ( ̅) et la médiane ( Me ) et le mode ( Mo ) sont des mesures qui indiquent la position où semble se rassembler les valeurs de l'échantillon.
→ On calcule l'effectif total de la série : ici, l'effectif total est égal à 10 (il y a 10 valeurs). → (10+1)/2 = 5,5 donc la médiane est la moyenne entre la cinquième et la sixième valeur.
Comment calculer ? La moyenne est calculée en additionnant toutes les valeurs et en divisant la somme par le nombre total de valeurs. La médiane peut être calculée en répertoriant tous les numéros dans l'ordre croissant, puis le nombre dans le centre de distribution.
détermination de la classe médiane : la classe médiane est la classe de valeurs de la. variable contenant la médiane. Elle est déterminée de la même manière que la médiane dans le cas d'une variable discrète, à partir des effectifs et des fréquences cumulés.
médiatrice n.f. Droite perpendiculaire à un segment et passant par son milieu.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie.
La médiatrice d'un segment est la droite qui coupe ce segment en son milieu perpendiculairement. Dans un triangle, les médiatrices sont concourantes en un point appelé centre du cercle circonscrit au triangle. La bissectrice d'un angle est la demi-droite qui partage cet angle en deux angles de même mesure.