Si ABC est un triangle, la
Définition : Dans un triangle, une hauteur est une droite passant par un sommet et perpendiculaire au côté opposé. Il y a donc 3 hauteurs. Le point d'intersection d'une hauteur et d'un côté s'appelle le pied de la hauteur.
On trace la droite perpendiculaire à la droite [BC] passant par A. On note H le point d'intersection entre la hauteur et la droite [BC]. On dit que H est le pied de la hauteur.
L'orthocentre est le point d'intersection des trois hauteurs d'un triangle. Le centre de gravité est le point d'intersection des trois médianes d'un triangle. Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle.
3. La hauteur. Définition : Dans un triangle, la hauteur issue d'un sommet est la droite qui passe par ce sommet et qui est perpendiculaire au côté opposé à ce sommet. Dans le triangle ABC, (h1) est la hauteur issue de C ; (h2) est la hauteur issue de A ; (h3) est la hauteur issue de B.
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle.
La hauteur d'un triangle est une droite qui passe par un sommet du triangle et qui est perpendiculaire au côté opposé à ce sommet. Pour construire une hauteur, il te faut une équerre. Les hauteurs sont tracées en vert.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie. Exemple : Tous les triangles possèdent un orthocentre.
Une médiane est un segment qui relie le sommet d'un triangle au milieu du côté opposé à ce sommet.
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle.
Les trois hauteurs d'un triangle sont concourantes. Leur point d'intersection H, est nommé orthocentre du triangle. On considère l'homothétie de centre le centre de gravité du triangle et de rapport –2. Elle transforme le triangle ABC en un triangle A'B'C'.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle. Cette deuxième définition permet de tracer la bissectrice d'un angle avec un compas.
Théorème des cathètes
produit de l'hypoténuse par la hauteur issue du sommet de l'angle droit. Cette formule permet de calculer la hauteur du triangle rectangle : h = ba/c.
Une hauteur est un segment qui relie un sommet à son côté opposé et qui est perpendiculaire à ce côté opposé.
Comme les trois hauteurs, les trois médianes d'un triangle sont concourantes. On trace la droite passant par B et par le milieu de \left[ AC \right] ainsi que la droite passant par C et par le milieu du segment \left[ AB \right]. On obtient les trois médianes.
Médiane : droite joignant le sommet d'un triangle au milieu du côté opposé. Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
DÉFINITION: Une hauteur dans un triangle est une droite passant par un sommet et perpendiculaire au côté opposé. PROPRIÉTÉ: Dans un triangle les 3 hauteurs sont toujours concourantes. Leur point commun est appelé orthocentre du triangle.
Les bissectrices intérieures sont concourantes, leur point d'intersection étant le centre du cercle inscrit dans le triangle.
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, situés sur un même cercle.
Le point de la hauteur située sur droite (BC) est le pied de la hauteur. On définit de même les hauteurs issues de B, et de C. Alors les 3 hauteurs du triangle se coupent en un même point qui est l'orthocentre du triangle.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Une hauteur dans un triangle est la droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Dans ce cas, on dit que (AH) est la hauteur issue de A ou que (AH) est la hauteur relative au côté [BC]. [BC] est aussi appelé la base relative à cette hauteur.
Trace une droite perpendiculaire au deuxième côté [BC] et qui passe par le sommet opposé A. Trace une droite perpendiculaire au troisième côté [CA] et qui passe par le sommet opposé B. Les droites (h1), (h2) et (h3) sont les 3 hauteurs du triangle.