La représentation graphique L'image de x par f est l'ordonnée du point de C_{f} d'abscisse x. Les antécédents de y par f sont les abscisses des points de C_{f} d'ordonnée y.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Dans une fonction, une image est la grandeur obtenue à partir d'une fonction appliquée à un antécédent. Un nombre x ne peut avoir qu'une seule image y par la fonction f.
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
Le nom propre « Charles » et le nom commun « voiture » sont les deux antécédents du pronom possessif « la sienne » (anaphore). Dans cet exemple, « voiture » et « la sienne » désignent bien une voiture, mais pas la même : respectivement, la voiture de l'énonciateur, puis, celle de Charles.
1. Fait antérieur sur lequel on appuie un raisonnement, une conclusion : Invoquer un antécédent. 2. Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
Le seul antécédent de 4 par f est -2.
Il s'agit d'une description ou d'une évocation : paysage, portrait, scène... Elle peut prendre la forme d'une hypotypose. L'image n'a qu'un sens, même si celui-ci peut avoir une valeur symbolique. Le tableau entier peut apparaître comme le symbole de la mélancolie.
1 - A partir d'une courbe
Le ou les abscisses des points d'intersection avec la courbe (s'ils existent) sont les antécédents cherchés.
Lecture graphique d'images et d'antécédents. Méthode L'axe des abscisses est l'axe horizontal, l'axe des ordonnées est l'axe vertical. On lit les antécédents sur l'axe des abscisses et les images sur l'axe des ordonnées.
L'image de x par f est l'ordonnée du point de C_{f} d'abscisse x. Les antécédents de y par f sont les abscisses des points de C_{f} d'ordonnée y.
Pour la trouver, on multiplie le nombre de pixels sur la hauteur de la photo par celui sur la largeur. Ainsi, pour une photo présentant 6 000 pixels sur la hauteur et 4 000 sur la largeur, la définition sera de : 6000 x 4000 px = 24 000 000 px, soit 24 mégapixels.
Nous devons donc déterminer le ou les nombres x qui ont pour image12. Autrement écrit, il nous faut trouver les x tels que f(x) = 12. Pour cela, nous devons résoudre l'équation f(x) = 12 où l'inconnue est x. Le seul antécédent de 12 par la fonction f est donc x = 4.
1- Lire les informations apportées par les axes. 2- Repérer sur la courbe les points remarquables (maximum, minimum, point d'inflexion). 3- Découper la courbe en plusieurs parties. 4- Justifier chaque partie par des données chiffrées qui indiquent comment évolue le paramètre mesuré par rapport au paramètre qui a varié.
Quels sont les antécédents de 3 par la fonction f ? L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0.
Le seul antécédent de 8 par la fonction f est donc x = 4.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
On dit que 36 est l'image de 6 par la fonction f. Cette image est unique. On dit aussi que 6 est l'antécédent de 36 par la fonction f.
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
− Représentation (ou réplique) perceptible d'un être ou d'une chose.
Pour déterminer un antécédent d'un nombre à l'aide d'un tableau, il suffit de repérer ce nombre dans la deuxième ligne du tableau ( f ( x ) f(x) f(x)) et de lire son antécédent sur la première ligne ( x x x).
L'image d'un nombre x par une fonction f est le nombre f(x) qui lui est associé par cette fonction f. Calculons l'image de 3 par la fonction f. Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 4. Il s'agit donc de remplacer x par 4 dans l'expression de f.
Il s'agit de trouver le nombre x tel que h(x) = –10. Or, h(x) = 5x donc 5x = –10 ; soit x = = –2. L'antécédent de –10 par h est –2.
4 est l'antécédent de -12 par g.
L'image de 0 par la fonction f est 0.