L'écart type (standard deviation) notation usuellement utilisée dans la statistique anglo-saxonne, aussi dans certains logiciels de statistique comme SAS.
Pour comprendre les résultats du calcul de l'écart type, voici ce qu'il faut retenir : Entre 0 et 3 %, la volatilité de l'actif est très faible et le risque est moindre. Entre 3 et 8 %, l'actif est peu volatil et le risque est faible.
L'écart-type ne peut pas être négatif. Un écart-type proche de signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
L'écart-type est un outil statistique qui permet d'estimer la dispersion des valeurs par rapport à la moyenne. Plus l'écart-type a une valeur élevée, plus les données sont dispersées par rapport à la moyenne. L'unité de l'écart-type est la même que celle de la moyenne.
L'écart-type expérimental est s=racinecarré[Σ(xi-m)2/(n-1)] (et c'est un estimateur biaisé de σ).
Pour deux ensembles de données ayant la même moyenne, celui dont l'écart-type est le plus grand est celui dans lequel les données sont les plus dispersées par rapport au centre. L'écart-type est égal à 0 zéro si toutes les valeurs d'un ensemble de données sont les mêmes (parce que chaque valeur est égale à la moyenne).
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
E ( X ) = X ¯ = x 1 + ⋯ + x N N . La variance et l'écart-type mesurent eux la dispersion des valeurs de cette série statistique autour de sa moyenne. La variance V(X) est définie par V(X)=1N((x1−¯X)2+⋯+(xN−¯X)2)=1NN∑k=1(xk−¯X)2.
∑ [terme général d'une suite arithmétique] = [nombre de termes] × [premier terme] + [dernier terme] 2 .
Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci. Par contre, plus une variance est élévée plus la dispersion des observations est importante ; elle est très sensible aux valeurs extrêmes.
On l'obtient simplement en additionnant l'ensemble des valeurs et en divisant cette somme par le nombre de valeurs. Ce calcul peut être fait à partir des données brutes ou d'un tableau de fréquences.
Exemple : Notation des professeurs X et Y : - L'étendue des notes données par le professeur X est de (13-7)=6, ce qui signifie que l'écart maximum entre deux notes du professeur X est de 4. => La dispersion des notes du professeur Y est donc beaucoup plus forte que celle des notes du professeur X.
La façon dont les notes dans un groupe se répartissent autour de la moyenne (l'écart-type) : plus les notes de l'ensemble du groupe sont rapprochées de la moyenne, plus la cote R d'un bon élève a des chances d'être élevée.
En règle générale, plus l'écart type est grand, plus l'erreur type de la moyenne est élevée et moins l'estimation de la moyenne de la population est précise. En revanche, plus l'effectif d'échantillon est élevé, plus l'erreur type de la moyenne est faible et plus l'estimation de la moyenne de la population est précise.
La médiane est le point milieu d'un jeu de données, de sorte que 50 % des unités ont une valeur inférieure ou égale à la médiane et 50 % des unités ont une valeur supérieure ou égale. Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant.
L'étendue d'une série statistique est la différence entre la valeur la plus grande et la valeur la plus petite de cette série. Etendue = 4 – 0 = 4. L'étendue de cette série statistique est donc de 4. Remarque : L'étendue est un indicateur de la dispersion des valeurs de cette série statistique.
La formule de la variance est V= ( Σ (x-μ)² ) / N. On démontre que V= ( (Σ x²) / N ) - μ². Cette formule est plus simple à appliquer si on calcule la variance à la main.
On définit avec elle des conventions d'écriture, elle permet d'établir un intervalle de confiance. L'écart relatif permet de comparer le résultat de la mesure obtenu à une valeur attendue.
1 - On calcule la moyenne de la série. 2 - On calcule la valeur absolue de la différence entre chacune des valeurs de la série et la moyenne. 3 - On fait leur somme. 4 - On divise cette somme par l'effectif de la série.