C'est quoi un endomorphisme induit ?

Interrogée par: Antoine Verdier  |  Dernière mise à jour: 16. Oktober 2022
Notation: 4.8 sur 5 (47 évaluations)

L'endomorphisme induit est la double restriction de l'endomorphisme initial avec à la fois un nouvel ensemble de départ et un nouvel ensemble d'arrivée. La condition de stabilité est une condition nécessaire et suffisante pour que cette double restriction soit une application.

Comment montrer que c'est un endomorphisme ?

Si F = K on dit que f est une forme linéaire. Si F = E, f est appelée un endomorphisme. Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K.

Comment réduire un endomorphisme ?

Réduction et endomorphisme nilpotent

Pour continuer à réduire u, il faut ensuite, sur chaque sous-espace caractéristique Eλ réduire l'endomorphisme nilpotent associé. Pour un endomorphisme nilpotent, l'unique valeur propre est 0, donc l'unique sous-espace propre est le noyau.

Comment montrer qu'un endomorphisme est Nilpotent ?

Un endomorphisme d'un espace de dimension n est nilpotent si et seulement si son polynôme caractéristique est égal à Xn. En effet, le polynôme caractéristique est unitaire, de degré n et a les mêmes facteurs premiers que le polynôme minimal.

Comment calculer un endomorphisme ?

Les endomorphismes f et fa,b sont égaux sur une base donc égaux sur l'espace ℂ entier. fa,b(fa,b(z))=(a2+|b|2)z+2Re(a)bˉz. L'endomorphisme fa,b est donc une symétrie si, et seulement si, {a2+|b|2=12Re(a)b=0.

V20 : Endomorphisme induit, d'un endomorphisme diagonalisable

Trouvé 34 questions connexes

Comment montrer qu'un endomorphisme est Bijectif ?

Remarque. Pour montrer qu'un endomorphisme f ∈ L(E) est bijective, il suffit de montrer que f est injectif (en montrant par exemple que Ker(f) = {0E}) ou que f est surjectif (en montrant Im(f) = F).

Comment trouver l'image d'un endomorphisme ?

Aide simple. Prendre un vecteur \(u\) quelconque de \(E\), l'écrire dans la base \(B\), calculer son image \(f(u)\), puis traduire l'égalité \(f(u)=0\). Pour l'image de \(f\) consulter la méthodologie.

Comment trouver l'indice de Nilpotence ?

L'indice d'une matrice nilpotente est égal à la dimension de sa plus grande matrice de Jordan.

Comment savoir si une matrice est Nilpotente ?

Définition d'une matrice nilpotente

Une matrice nilpotente est une matrice carrée dont une puissance est nulle, c'est-à-dire telle qu'il existe un entier naturel tel que N p = 0 . Cela entraîne que quelque soit l'entier r supérieur ou égal à , on a N r = 0 .

Comment calculer le polynome caractéristique ?

Le polynôme caractéristique d'une matrice carrée A est det(A - λI) (c'est un polynôme en λ). ∣ ∣ ∣ ∣ a - λ b c d - λ ∣ ∣ ∣ ∣ = (a -λ)(d -λ)-cd = λ2 -(a +d)λ+ad -bc . Rappel. Les valeurs propre d'une matrice carrée sont les racines de son polynôme caractéristique.

Comment montrer qu'un endomorphisme est symétrique ?

Définition. Un endomorphisme f de E est dit symétrique si : ∀(x, y) ∈ E2, 〈f(x),y〉 = 〈x, f(y)〉.

C'est quoi un polynôme scinde ?

En algèbre, un polynôme est dit scindé sur un corps commutatif K s'il est décomposable en facteurs de degré 1 sur K. C'est toujours le cas si K est un corps algébriquement clos ; En algèbre homologique, une suite exacte courte dans une catégorie abélienne est dite scindée s'il existe une section du second morphisme.

Quand la matrice est diagonalisable ?

La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.

Comment déterminer KERF et IMF ?

Exercice 2 Soit f ∈ L(E) telle que f3 = f2 + f, montrer que E = kerf ⊕ Imf. −→ y = f (−→x) ∈ Imf ∩kerf, il s'agit de prouver que −→ y = −→ 0 . Ainsi −→ y = −→ 0 . est bien la somme d'un élément de kerf et d'un élément de Imf.

Comment montrer qu'un endomorphisme est Surjectif ?

Démonstration : si f est bijective, alors elle est injective. On a alors Ker f = {0} et, d'apr`es le théor`eme du rang, dim E = rg f = dim Im f. Comme Im f ⊂ F et que dim E = dim F, on en déduit que Im f = F et f est surjective.

Comment déterminer la base de Im F ?

On a E l'ensemble des vecteurs de l'espace (donc de dimension 3). Cela implique (théorème du rang) que la base de Im(f) doit être constituée de 2 vecteurs pour que dim(Im(f))=2.

Quand la matrice est inversible ?

Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.

Quand Est-ce que deux matrices sont semblables ?

La similitude est une relation d'équivalence. Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme d'un espace vectoriel dans deux bases (éventuellement) différentes.

Comment trouver une base de Jordan ?

Construction de la base de Jordan

E est la somme directe des sous-espaces caractéristiques de u. Le sous-espace caractéristique associé à la valeur propre λ est noté ici Eλ. La restriction de u à Eλ est la somme d'une homothétie de rapport λ et d'un endomorphisme nilpotent noté nλ.

Comment on calcule le rang d'une matrice ?

Le rang d'une matrice est égal au nombre de ses lignes sauf si l'une d'entre elles est combinaison linéaire des autres. On dira qu'une matrice est facile si l'une de ses colonnes a tous ses nombres nuls sauf exactement un.

Pourquoi une matrice inversible ne peut pas être nilpotente ?

Une matrice nilpotente n'est pas inversible. En effet, soit M une matrice nilpotente, d'indice p. On a alors Mp = 0 et Mp−1 = 0. Supposons M inversible alors Mp−1 = M−1.Mp = 0 c'est absurde.

Comment calculer puissance d'une matrice carrée ?

Définition : Puissance d'une matrice

Si ? est une matrice carrée et ? est un entier positif, la ? e puissance de ? est donnée par ? = ? × ? × ⋯ × ? ,  où il y a ? copies de matrice ? .

Quand Dit-on qu'une application est linéaire ?

application. On dit que u est linéaire ou que c'est un morphisme si et seulement si : ∀x, y ∈ E, ∀λ, µ ∈ R, u(λx + µy) = λu(x) + µu(y). Lorsque E = F, un morphisme de E dans lui même s'appelle un endomorphisme.

Comment déterminer le noyau ?

Trouver une base du noyau de f := (x,y,z) ↦→ (x − y + z,−x + y − z). Trouver la dimension du noyau de f := (x,y,z,t) ↦→ (x + 5y + 7t,2x + 4y + 6z + t). C'est plus facile que trouver une base : c'est la dimension de départ diminué du rang de la matrice.

C'est quoi le noyau d'une matrice ?

On appelle noyaude la matrice A, noté Ker (A) , l'ensemble des matrices colonnes X ∈ Mq,1(R) telles que AX = (0)p×1 .

Article précédent
Qui a créé les Snickers ?