Dans des suites proportionnelles, rapport d'un terme de la première suite au terme de même rang de la deuxième suite. La constante de proportionnalité est égale à l'inverse du coefficient de proportionnalité.
Définition : Deux grandeurs sont proportionnelles si on peut calculer les valeurs de l'une en multipliant les valeurs de l'autre par un même nombre appelé coefficient de proportionnalité.
1. Se dit d'une quantité qui reste dans son rapport de proportion avec une autre : La somme gagnée est proportionnelle au travail. 2. Qui est déterminé par une proportion, une relation à quelque chose d'autre : Retraite proportionnelle.
Quel est le contraire de proportionnel ? Ce n'est pas exactement le contraire, mais plutôt l'opposé : inversement proportionnel . Quand deux quantités sont inversement proportionnelles l'une de l'autre, ça signifie que plus l'une augmente, plus l'autre diminue.
Logique. Probabilité Statistique. La règle de trois (La règle de trois, aussi appelée produit croisé, permet de résoudre de nombreux problèmes...), aussi appelée produit croisé, permet de résoudre de nombreux problèmes concernant des phénomènes proportionnels.
Rapport relatif de grandeur existant entre une quantité et une autre, entre un nombre et un autre pris comme référence : Une proportion de un volume de riz pour deux d'eau.
Un tableau de proportionnalité caractérise une situation de proportionnalité. Il contient les valeurs de deux grandeurs proportionnelles. C'est donc un tableau dans lequel on obtient les nombres d'une ligne en multipliant les nombres de l'autre ligne par le coefficient de proportionnalité.
En mathématiques, on dit que deux suites de nombres sont proportionnelles quand, en multipliant (ou en divisant) par une même constante non nulle, les termes de l'une on obtient les termes de l'autre. Le facteur constant entre l'une et l'autre de ces suites est appelé coefficient de proportionnalité.
En sciences, une constante est une grandeur dont la valeur est fixée par convention ou par calcul, indépendamment du problème dans lequel elle est rencontrée. Cette notion s'oppose ainsi à celle de variable, dont la valeur peut changer au cours d'un même problème.
constante
Quantité qui conserve toujours la même valeur ; nombre indépendant des variables, dans une équation. 2. Tendance, orientation générale permanente : Les constantes d'une politique.
Une constante est un objet dont l'état reste inchangé durant toute l'exécution d'un programme. On ne peut jamais modifier sa valeur et celle-ci doit donc être précisée lors de la définition de l'objet.
« Terme » désigne chacun des éléments intervenant dans un rapport, une addition, une soustraction, une suite, une proportion ou une fraction. Par exemple : Admettons la suite 1, 2, 3, 4. Les 4 chiffres sont des termes.
On peut déterminer la valeur de k en effectuant une même réaction à différentes températures. On obtient ainsi une série de mesures rassemblant k = f(t). La méthode des vitesses relatives permet de déterminer l'ordre de réaction par rapport à chacun des réactifs.
On parle de produit en croix, car on utilise les valeurs opposées du tableau en dessinant une diagonale. Il faut multiplier les deux produits en croix et diviser par la troisième valeur du tableau pour obtenir la valeur de l'inconnue.
Calculer une proportion Méthode
Afin de calculer une proportion, on divise l'effectif du caractère recherché par l'effectif total.
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.
Pour simplifier, il faut trouver le multiple commun au numérateur et au dénominateur, et diviser les deux termes de la fraction, par ce multiple.
Dans une proportion, le produit des extrêmes est égal au produit des moyens. Si ab=cd a b = c d , alors a×d=b×c a × d = b × c .
Il rappelle que dans un tel cas, le produit du premier nombre par le quatrième doit être égal au produit du second par le troisième. Il établit alors la règle : multiplie le troisième par le second et divise le par le premier, ainsi tu obtiendras le quatrième.
La règle de trois apparaît pour la première fois en Inde au VIIème siècle puis est transmis au monde arabo-musulman au IXème siècle avant d'apparaître en Europe à partir du XIIIème siècle. Cette règle s'est popularisée à partir des années 1830-1840.