Le coefficient de Pearson permet de mesurer le niveau de corrélation entre les deux variables. Il renvoie une valeur entre -1 et 1. S'il est proche de 1 cela signifie que les variables sont corrélées, proche de 0 que les variables sont décorrélées et proche de -1 qu'elles sont corrélées négativement.
Deux variables quantitatives sont corrélées si elles tendent à varier l'une en fonction de l'autre. On parle de corrélation positive si elles tendent à varier dans le même sens, de corrélation négative si elles tendent à varier en sens contraire.
Statistiques pour décrire une variable quantitative
La description d'une variable quantitative se base sur les statistiques suivantes : la moyenne, la médiane, la variance, l'écart-type, les quantiles. On peut aller plus loin en regardant l'asymétrie et l'aplatissement.
Le rapport de corrélation est un indicateur statistique qui mesure l'intensité de la liaison entre une variable quantitative et une variable qualitative. la moyenne globale. Si le rapport est proche de 0, les deux variables ne sont pas liées. Si le rapport est proche de 1, les variables sont liées.
Croiser une variable quantitative et une variable qualitative, c'est essayer de voir si les valeurs de la variable quantitative se répartissent différemment selon la catégorie d'appartenance de la variable qualitative. Cette syntaxe de boxplot utilise une nouvelle notation de type “formule”.
L'outil principal pour étudier les relations entre variables qualitatives est le tableau croisé (parfois appelé tri croisé). Il s'agit d'un tableau indiquant la distribution des individus selon deux variables simultanément [2][2]Sur les principes de construction et de lecture de tels….
Il est possible de regrouper les données relatives à deux variables qualitatives sous la forme d'un tableau d'effectifs ou de fréquences. On parle de tableau de contingence. La réalisation d'un tableau de contingence sur R se fait à l'aide de la commande table() .
Liaison entre deux caractères (corrélation simple) ou plus (corrélation multiple) telle que les variations de leurs valeurs soient toujours de même sens (corrélation positive) ou de sens opposé (corrélation négative).
On distingue divers types de variables selon la nature des données. Ainsi, une variable peut être qualitative ou quantitative; une variable qualitative peut être nominale ou ordinale, alors qu'une variable quantitative peut être continue ou discrète.
Le coefficient de corrélation linéaire, ou de Bravais-Pearson, permet de mesurer à la fois la force et le sens d'une association. Variant de -1 à +1, il vaut 0 lorsqu'il n'existe pas d'association. Plus ce coefficient est proche de -1 ou +1, plus l'association entre les deux variables est forte, jusqu'à être parfaite.
Le coefficient de Pearson permet de mesurer le niveau de corrélation entre les deux variables. Il renvoie une valeur entre -1 et 1. S'il est proche de 1 cela signifie que les variables sont corrélées, proche de 0 que les variables sont décorrélées et proche de -1 qu'elles sont corrélées négativement.
Interprétation des valeurs de R carré? Ce coefficient est compris entre 0 et 1, et croît avec l'adéquation de la régression au modèle: – Si le R² est proche de zéro, alors la droite de régression colle à 0% avec l'ensemble des points donnés.
En d'autres mots, plus la valeur du coefficient de corrélation linéaire est près de 1 ou -1, plus le lien linéaire entre les deux variables est fort. À l'inverse, plus sa valeur est près de 0, plus le lien linéaire entre les deux variables est faible.
Le test statistique se base sur le coefficient de Pearson r calculé par cor(x, y) . Il suit une distribution t avec un degré de liberté ddl = length(x)-2 si les échantillons suivent une distribution normale indépendante. La fonction indique enfin une p-value pour ce test.
Pour savoir si la distribution des réponses de deux variables qualitatives est due au hasard ou si elle révèle une liaison entre elles, on utilise généralement le test du Khi2 dit «Khi-deux».
Utilisez les figures uniquement pour les résultats particulièrement importants par rapport à vos hypothèses. N'abusez jamais des figures. Ne les utilisez que si elles aident à comprendre les résultats. Par exemple, pour comparer les moyennes de deux groupes, on n'a pas besoin d'une figure.
Lorsque les données sont collectées, la valeur-p est calculée et la décision suivante est prise : si elle est inférieure à α, on rejette l'hypothèse nulle au profit de l'hypothèse alternative ; si elle est supérieure à α, on rejette l'hypothèse alternative au profit de l'hypothèse nulle.
Une variable est un moyen de stocker des valeurs. Pour utiliser une variable, on doit à la fois la déclarer — pour permettre au programme de la connaître — puis on doit lui "affecter" une valeur — pour permettre au programme de savoir quelle valeur nous avons stockée dans la variable.
L'analyse des données consiste à identifier parmi la variété de données présentées celles qui sont significatives, à la lumière des objectifs de la recherche, et à établir des relations entre elles. Cette analyse est à la base de l'interprétation ou de la discussion des résultats.
Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.