Le produit scalaire est très important en mathématiques, car il caractérise l'orthogonalité : les droites (AB) et (CD) sont orthogonales si, et seulement si, −−→AB⋅−−→CD=0. A B → ⋅ C D → = 0. En outre, les calculs de longueur sont aussi reliés au produit scalaire, par la relation AB=√−−→AB⋅−−→AB.
En effet, si H est le projeté orthogonal de C sur la droite (AB), le produit scalaire est alors en valeur absolue égal au produit des distances AH et AB. Si A se trouve entre H et B, le produit scalaire est négatif et positif sinon. On remarque que si H est confondu avec A, alors le produit scalaire est nul.
Si ϕ : E × E → C est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si ϕ : E × E → K est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si 〈·|·〉 est un produit scalaire sur E alors pour tout x ∈ E, 〈x|x〉 ≥ 0. On pose alors x = √〈x|x〉 qu'on appelle la norme de x.
Le produit scalaire est donc du signe du cosinus, c'est-à-dire positif si l'angle formé par les vecteurs est aigu et négatif si l'angle est obtus (à visualiser sur le cercle trigonométrique).
Si le produit scalaire de deux vecteurs est nul, on dit que ces vecteurs sont orthogonaux. Pour que deux vecteurs non nuls aient un produit scalaire nul, il faut que leurs droites d'application soient perpendiculaires (ainsi, le projeté orthogonal du deuxième sur le premier est un point, de longueur nulle).
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
Le produit scalaire est distributif : ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑤 = ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑢 ⋅ ⃑ 𝑤 . Le produit scalaire de deux vecteurs ⃑ 𝑢 et ⃑ 𝑣 est égal au produit de leurs normes et du cosinus de l'angle qu'ils forment : ⃑ 𝑢 ⋅ ⃑ 𝑣 = ‖ ‖ ⃑ 𝑢 ‖ ‖ ⋅ ‖ ‖ ⃑ 𝑣 ‖ ‖ ⋅ 𝜃 , c o s où 𝜃 est l'angle entre ⃑ 𝑢 et ⃑ 𝑣 .
Si les deux vecteurs ont le même sens, alors leur produit scalaire sera toujours un nombre POSITIF. Mais, si les vecteurs sont de sens opposés, alors leur produit scalaire sera NEGATIF. Si un des vecteurs est nul ( égal à 0) alors le produit scalaire des deux vecteurs est nul (égal à 0).
Soit deux vecteurs →u et →v; le nombre réel résultant de l'opération notée →u⋅→v et telle que →u⋅→v=‖→u‖⋅‖→v‖cosθ, où ‖→u‖ désigne la norme du vecteur u, ‖→v‖ désigne la norme du vecteurv et θ est la mesure de l'angle formé entre les directions des deux vecteurs.
Le produit scalaire de deux vecteurs est un nombre réel, qui peut être positif, négatif ou nul. sont bien orthogonaux. , on a . des vecteurs et a un nombre réel.
où le point centré représente le produit scalaire(*). La vérification du fait que ce produit est associatif est aisée. Elle repose sur deux propriétés classiques du produit vectoriel, à savoir le fait qu'il agit par applications antisymétriques et l'identité du double produit vectoriel.
Le produit scalaire et le produit vectoriel sont deux calculs réalisés à partir deux vecteurs de même nombre de composantes. Ils ont en revanche des différences fondamentales: Avec le produit scalaire on obtient un scalaire (c'est-à-dire un nombre) tandis qu'avec le produit vectoriel on obtient un vecteur.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853.
Si les vecteurs sont parallèles et de même sens, leur produit scalaire est égal au produit de leurs longueurs. En effet : α = 0 et cos 0 = 1 . Si les vecteurs sont parallèles et de sens contraires, leur produit scalaire est égal à l'opposé du produit de leurs longueurs.
Le produit vectoriel est commutatif, quel que soit l'ordre dans lequel interviennent les deux vecteur, le résultat reste le même.
Le produit scalaire de deux vecteurs et colinéaires est égal à AB × CD s'ils sont de même sens, et à - AB × CD s'ils sont de sens contraires. Pour calculer le produit scalaire . , on peut remplacer le vecteur par sa projection orthogonale sur le vecteur . → AB . → CD = → AB .
Le produit vectoriel est une opération qui peut être appliquée à deux vecteurs et qui produit un autre vecteur. Le produit vectoriel est utilisé dans de nombreux domaines de la physique. Il peut notamment être utile pour calculer le couple sur un objet.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Dans la mesure où le vecteur ⃑ 𝑣 pointe vers le bas, il peut être tentant de se dire que le signe de la norme est négatif. Cependant, il faut se rappeler qu'une longueur, donc la norme, ne peut pas être négative.
Soient u et v , deux vecteurs de coordonnées respectives (xy) et (x′y′). Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.
Le produit vectoriel est linéaire à gauche : →u×(α→v+β→w)=α(→u×→v)+β(→u×→w). Le produit vectoriel est linéaire à droite : (α→u+β→v)×→w=α(→u×→w)+β(→v×→w).