Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
Ex : système de numération décimal (le nôtre). Dans 145, 1 = 1 centaine = 100, 4 = 4 dizaines = 40 et 5 = 5 unités = 5. La base est définie par le nombre de signes différents qui permettent d'écrire un nombre. En base 10 → 10 chiffres En base 3 → 3 chiffres (0,1,2).
Si le nombre se termine par un zéro, le dernier zéro est remplacé par un : par ex. 100 (4) + 1 (1) = 101 (5).
Pour réaliser cette conversion il suffit d'effectuer une succession de division par 2. Exemple : On souhaite convertir la valeur décimale 149(10) en un nombre binaire. La conversion du nombre 149(10) (en décimal) en binaire est donc : 1001 0101(2).
Les chiffres de la base 10 sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. En base dix, pour décrire l'entier 4758, on peut écrire : 8 unités, 5 dizaines, 7 centaines et 4 milliers.
Par exemple, le nombre 27 se décompose en base 2 sous la forme 27=16+8+2+1=1×16+1×8+0×4+1×2+1×1, et son écriture en base 2 est donc 11011.
Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
Passer d'une donnée Décimal en Hexadécimal : Hexadécimal est associé à 16, il vous suffit de saisir une division avec reste de vos nombre décimal et de le diviser par 16 jusqu'à avoir un résultat Nul.
Les calculs par lesquels on doit débuter sont ceux qui sont le plus entre parenthèses. Lorsqu'on a identifié ce premier calcul, on doit commencer par les multiplications et les divisions (s'il y en a), puis seulement ensuite traiter les additions et soustractions.
Priorités de calcul : Les calculs se font dans l'ordre des priorités suivant : 1/ Les calculs entre parenthèses 2/ Les puissances 3/ La multiplication et la division 4/ L'addition et la soustraction 5/ En cas d'opérations de mêmes priorités, de gauche à droite.
Pour passer du binaire en octal : on parcourt le nombre binaire de la droite vers la gauche en regroupant les chiffres binaires par paquets de 3 (en complétant éventuellement par des zéros). Il suffit ensuite de remplacer chaque paquet de 3 par le chiffre octal.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul. Le résultat sera la juxtaposition des restes. Le bit de poids fort correspondant au reste obtenu à l'ultime étape de la division.
Pour savoir dans quelle colonne on doit placer le chiffre des unités et la virgule, il suffit de regarder quelle est l'unité de mesure du nombre. Pour convertir un nombre décimal, il faut déplacer la virgule d'un (ou plusieurs) rang(s), et / ou rajouter un (ou plusieurs) 0.
On peut reformuler ainsi : En base N, on a donc besoin de N chiffres, de 0 à N – 1. Par exemple, en base dix, on a besoin de dix chiffres, de 0 à 9, en base trois, on a besoin des trois chiffres de 0 à 2, etc. , l'indice et le suslignage étant facultatif pour la base dix.