Qu'est ce que le module d'un nombre complexe ? (Définition) Le module est la longueur (valeur absolue) dans le plan complexe qualifiant le nombre complexe z=a+ib z = a + i b (avec a la partie réelle et b la partie imaginaire), il est noté |z| et est égal à |z|=√a2+b2 | z | = a 2 + b 2 .
Afin de calculer le module ∣z∣ et un argument θ d'un nombre complexe z, on détermine sa forme algébrique z = a+ib.
Théorème - Définition : On peut toujours écrire un nombre complexe z sous la forme : z = |z|(cos(θ)+i sin(θ)), avec θ = arg(z). On appelle ceci la forme trigonométrique de z. cos(θ) = a |z| , sin(θ) = b |z| . Exemple : Calculer |z| et arg(z) pour z = 1+i.
Définition : Soit un nombre complexe z = a + ib. On appelle module de z, le nombre réel positif, noté z , égal à a2 + b2 . M est un point d'affixe z. Alors le module de z est égal à la distance OM.
La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²). * Pour calculer la norme d'un vecteur du plan, laissez la case z vide. Exemples : Calculons la norme du vecteur du plan de coordonnées (5;12).
Remarques : - le nombre complexe 0 n'a pas d'argument. - l'argument d'un réel non nul est de la forme k où k est un entier relatif. - l'argument d'un imaginaire pur est de la forme k /2 où k est un entier relatif.
On appelle argument d'un nombre complexe non nul z une mesure θ de l'angle orienté ( u → , OM → ) . C'est un nombre réel défini modulo 2 π et noté arg ( z ) . On a donc : z = ∣ z ∣ . ( cos ( θ ) + i sin ( θ ) ) .
Le complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point.
L'argument d'un nombre complexe ? est la mesure de l'angle entre l'axe des réels positifs d'un plan complexe et le segment reliant l'origine à l'image du nombre complexe, mesurée en radians dans le sens inverse des aiguilles d'une montre.
L'argument d'un nombre complexe z non nul, est noté arg(z). Si M a pour affixe z, arg(z) désigne l'angle orienté (u,OM). En posant q=arg(z), où z=x+iy, on a: cos(q)=x/|z| et sin(q)=y/|z|.
Le module d'un réel est sa valeur absolue. Le module de 1 + i est √2.
On fait de même pour la multiplication : pour a, b ∈ /n , on associe a × b ∈ /n . Par exemple 3 × 12 donne 10 modulo 26, car 3 × 12 = 36 = 1 × 26 + 10 ≡ 10 (mod 26). De même : 3 × 27 = 81 = 3 × 26 + 3 ≡ 3 (mod 26).
Pour ceux qui l'auraient oublié, l'opération de « modulo » désigne le reste de la division entière. Dans notre cas, si on divise 1370476243484 par 97, on obtient 14128621067 et il reste 82, donc Clé = 97 – 82 = 15.
Le multiplicateur correspond à la position du chiffre 1 à partir de la droite. Tous les produits qui en résultent sont ajoutés. Le résultat est ensuite divisé par 11. Le reste résultant est soustrait de 11 et les résultats dans le chiffre de contrôle.
Tout élément z de s'écrit de manière unique : z = a + ib (a et b réels), donc si z = a + ib et z' = a' + ib', z = z' ⇔ a = a' et b = b'. a + ib (a et b réels) s'appelle la forme algébrique du nombre complexe z. Le réel a s'appelle la partie réelle de z, notée Re(z).
Théorème – Définition : Tout nombre complexe non nul z s'écrit sous la forme suivante : z = r (cos (θ) + i sin (θ)) avec r = |z| et θ = arg (z) [2π] Cette forme est appelée forme trigonométrique du complexe z.
Calculer le module, l'argument ou le conjugué d'un nombre complexe. Le module d'un nombre complexe se calcule en utilisant : w {Abs}. L'argument d'un nombre complexe s'obtient en utilisant : e {Arg}. Le conjugué d'un nombre complexe s'obtient en utilisant : r {Conjg}.
Tout nombre est égal à sa propre puissance d'exposant 1, tandis que toute puissance d'exposant nul vaut 1 par convention.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Lorsque l'on met x à la puissance 0, on effectue donc un produit vide. Or, une somme vide, sans aucun terme, est égale à l'élément neutre pour l'addition, c'est-à-dire 0. Ainsi, un produit de 0 terme, vide, est égal à l'élément neutre pour la multiplication, c'est-à-dire 1. Ainsi, 0^0 = 1.
En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe.