Afin de calculer une proportion, on divise l'effectif du caractère recherché par l'effectif total. Dans un lycée, on compte 685 élèves. 311 sont des garçons et 374 des filles. Quelle est la proportion de filles dans cet établissement ?
Cette proportion peut s'exprimer en pourcentage : p = 22,5 %. Exemple : Parmi les 480 élèves de 1ère, 15 % ont choisi la filière L. 15 % de 480 ont choisi la filière L, soit : 15%× 480 = 15 100 × 480 = 72 élèves.
Deux grandeurs sont proportionnelles quand on obtient les valeurs de l'une en multipliant par le même nombre – autre que 0 – toutes les valeurs de l'autre. Le nombre qui permet de passer d'une suite de nombres à l'autre s'appelle le « coefficient de proportionnalité ».
MÉTHODE – Calcul du coefficient de proportionnalité Pour passer des valeurs d'une grandeur aux valeurs d'une autre, on peut utiliser le coefficient de proportionnalité. Pour trouver ce coefficient, il suffit d'une valeur de la 1re grandeur et de la valeur de la 2e qui correspond. On divise la 2e par la 1re.
DÉFINITION – Proportion Une proportion est un nombre qui permet de passer (par multiplication) de l'effectif d'une partie à l'effectif d'une autre partie (l'une des deux parties peut être le tout).
Pour cela, on peut : - utiliser le coefficient de proportionnalité s'il est donné ; - passer par l'unité, c'est-à-dire trouver la valeur associée à une unité qui est le coefficient de proportionnalité ; - utiliser la linéarité en effectuant des additions et des multiplications.
Le nombre x cherché dans ce tableau de proportionnalité est appelé quatrième proportionnelle. On calcule dans un premier temps, le coefficient de proportionnalité : 37,5 ÷ 5 = 7,5. Ce nombre correspond au prix d'une place de cinéma. On peut donc calculer le prix de 7 places : x = 7 × 7,5 = 52,5.
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la deuxième ligne en multipliant les nombres correspondants de la première ligne par un même nombre. (Dans cet exemple ce nombre est 2,5 car 5/2 = 2,5 ; 7,5/3 = 2,5 ; 10/4 = 2,5 ; …).
Dans un tableau de proportionnalité, on peut additionner les valeurs de deux colonnes pour obtenir celles d'une troisième colonne. Ainsi, en constatant que 5 = 2 + 3, on en déduit que la valeur de la deuxième ligne de la troisième colonne est la somme de 7 et de 10,7 soit 17,5.
➔ Dans la proportion a/b = c/d, si a = d, soit lorsque a/b = c/a, on dit que a est moyenne proportionnelle de b et c. C'est dire que a2 = bc : c'est un cas particulier de moyenne géométrique.
On peut également trouver les chiffres manquants d'un tableau de proportionnalité en utilisant le produit sur une colonne. Ainsi pour passer de la colonne 1 à 2, il faut multiplier par 3. Si on multiplie la première colonne par 3, on obtient 3, qui est bien le résultat de la seconde colonne.
Caractère de grandeurs, de quantités qui sont ou restent proportionnelles entre elles; rapport de proportion. Coefficient, loi de proportionnalité; proportionnalité de la masse et du poids.
On parle de produit en croix, car on utilise les valeurs opposées du tableau en dessinant une diagonale. Il faut multiplier les deux produits en croix et diviser par la troisième valeur du tableau pour obtenir la valeur de l'inconnue.
Une proportion correspond au rapport mathématique entre une partie et un ensemble : on l'obtient en divisant la partie par l'ensemble. Le pourcentage de répartition est égal à la proportion exprimée en %. Pour lire un pourcentage de répartition, il faut préciser l'ensemble par rapport auquel il est calculé.
Comment calculer la valeur numérique d'un pourcentage ? Si tu souhaites calculer la valeur numérique d'un pourcentage, il te suffit de multiplier la valeur globale par le pourcentage / 100. Exemple : Dans un collège, 200 élèves sont inscrits (valeur totale), 18 % (pourcentage) d'entre eux sont en classe de Troisième.
Il suffit de respecter cette règle : Rappelez-vous qu'un pourcentage est simplement une façon unique d'exprimer une fraction sous la forme d'un nombre compris entre 1 et 100. Divisez le numérateur par le dénominateur pour convertir une fraction en pourcentage. La décimale est ensuite multipliée par 100.
Propriété : Dans un tableau de proportionnalité, il y a égalité des produits en croix. Si a c b d est un tableau de proportionnalité, alors a b = c d , donc a × d = b × c. Tout graphique dont les points sont alignés avec l'origine du repère, représente une situation de proportionnalité.
Retenir. Deux grandeurs sont proportionnelles si on peut obtenir toutes les valeurs de l'une en multipliant celles de l'autre par un même nombre non nul. Elles varient toujours dans la même proportion.
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.
Le coefficient de proportionnalité est le nombre par lequel il faut multiplier le numérateur des taux ou des rapports d'une proportion pour obtenir le dénominateur. Soit la proportion suivante: 26=721 2 6 = 7 21 Dans cette proportion, le coefficient de proportionnalité est 3 .
Règle. Diviser le numérateur par le dénominateur. Multiplier le quotient obtenu à 100. 100.
Quatrième proportionnelle : propriété
Un tableau de proportionnalité étant donné, si on connaît 3 des nombres du tableau alors on peut toujours déterminer le 4ème. Ce 4ème nombre est appelé : quatrième proportionnelle.
On applique la règle fondamentale : 3 4 = 3 × 25 4 × 25 = 75 100 . Comme 75 100 > 73 100 , on peut conclure que 3 4 > 73 100 . Un pourcentage est une proportion par rapport à 100.
Pour effectuer une règle de trois, il faut : - Écrire la relation entre les deux nombres ; - Ramener la relation à l'unité ; - Calculer la valeur correspondante au 3ème nombre.
La règle de trois s'utilise quand il existe de manière évidente une proportionnalité entre deux variables comme le prix à payer en fonction de la quantité achetée en économie ou les relations entre les distances sur la carte et les distances sur le terrain dans des problèmes d'échelles.