Comme on connaît les longueurs des trois côtés du triangle, on peut utiliser la formule de Héron pour déterminer son aire. Selon la formule de Héron, l'aire, 𝐴 , d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle.
Pour calculer l'aire d'un triangle quelconque, on multiplie la base par la hauteur puis on divise par 2.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Donc l'aire du triangle ABC est donnée par : On a donc le résultat suivant : L'aire d'un triangle est égale au produit de la longueur d'un côté du triangle (base relative b) par sa hauteur h relative divisé par 2. Aire (ABC) = (base × hauteur) ÷ 2 = (b × h) ÷ 2.
Aire = √p(p-a)(p-b)(p-c)
Où a, b et c sont les longueurs des côtés du rectangle et où p est la moitié du périmètre du triangle.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
Un triangle scalène a des côtés de longueurs variables. Ils sont inégaux et ses angles sont de trois mesures différentes.
Cette règle se base sur le théorème de Pythagore : A2 + B2 = C2 pour un angle droit. C est le côté le plus long (hypoténuse) et A et B sont les deux côtés les plus courts X Source de recherche . Mesurez trois unités le long d'un côté à partir de l'angle.
On connaît la longueur MN du côté adjacent à l'angle \hat{N} et la longueur NP de l' hypoténuse. 2. On va donc utiliser le cosinus|cosinus de l'angle \hat{N}. cos|cosinus\hat{N} = \frac{MN}{NP} ; d'où \hat{N} = 53° (arrondi à l'unité).
Le théorème de Pythagore
Pour un triangle rectangle dont l'on nomme les côtés A, B et C, cela donne la formule : A² + B² = C².
Utilisation du théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
L'aire d'un triangle est égale au produit du demi-périmètre par le rayon du cercle inscrit.
Utilisation de la formule de Héron pour calculer l'aire d'un triangle dont on ne connait que la longueur des côtés.
Si, au contraire, tu as l'aire du triangle ainsi que la longueur de sa base, la formule pour trouver la hauteur du triangle est la suivante : La hauteur est égale à 2 fois l'aire du triangle divisé par la base du triangle.
Pour cela, il est nécessaire de connaître la mesure d'un angle et la longueur du côté opposé ou de l'hypoténuse. Pour calculer la longueur d'un côté, on utilise le calcul en croix. AC = AB× tan ABC = 5 × tan 45° = 5 Enfin, on peut utiliser la tangente pour calculer des angles au sein d'un triangle rectangle.
[AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2. Alors AC2 = BC2 − AB2 ou encore AC2 = 18,752−152.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Dans un triangle:
Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle.
La première chose à faire pour calculer la hauteur d'un triangle consiste à écrire le théorème de Pythagore, c 2 = a 2 + b 2, où c est l'hypoténuse (le côté opposé à l'angle droit).
La formule la plus courante est la suivante : A = 1/2bh, formule dans laquelle : • A aire du triangle, • B longueur de la base du triangle, • h hauteur associée à la base précédente.