Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur.
L'aire représente une surface. C'est un nombre qui permet d'exprimer « la taille » de cette surface. Pour calculer l'aire de figures géométriques, il faut utiliser des formules. La formule de l'aire d'un triangle est : Aire d'un triangle = (Base × hauteur) : 2 soit : A = (B × h) : 2.
La formule pour calculer l'aire d'un triangle est \frac{base\,\times\,hauteur}{2}. Ex. : un triangle de base 6 cm et de hauteur 4 cm a pour aire (6 × 4 ) ÷ 2 = 12 cm2.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Comme on connaît les longueurs des trois côtés du triangle, on peut utiliser la formule de Héron pour déterminer son aire. Selon la formule de Héron, l'aire, 𝐴 , d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle.
Si vous ne connaissez pas la mesure de la hauteur de votre triangle, il est néanmoins possible de calculer son aire à partir des longueurs de ses 3 côtés. Où a, b et c sont les longueurs des côtés du rectangle et où p est la moitié du périmètre du triangle.
Aire (ABC) = (hauteur × base) ÷ 2 = (h × BC.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Dans un triangle rectangle ABC, où l'angle droit est B, l'hypoténuse est donc le côté AC. Pythagore a ainsi théorisé que le carré de la longueur de l'hypoténuse est égal à la somme des carrés des 2 autres côtés (soit dans notre exemple, AC2 = AB2 + BC2).
En géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé.
Hauteur et aire
La hauteur d'un triangle équilatéral est égale à la longueur que l'on multiplie par la moitié de la racine carrée de 3.
Retenir Un triangle équilatéral est un triangle qui possède trois côtés de même longueur : il est isocèle en chacun de ses sommets. Propriété : Un triangle équilatéral possède toujours trois axes de symétrie : ce sont les médiatrices de chaque côté.
Le périmètre d'un triangle équilatéral de côté c est : P = c + c + c = 3 × c. L'aire d'une figure correspond à la mesure de sa surface.
Considérons un triangle 𝐴 𝐵 𝐶 rectangle en 𝐴 . Dans le triangle initial, le côté 𝑎 est l'hypoténuse et le côté opposé à l'angle 𝐵 est le côté 𝑏 . Ainsi, le sinus de l'angle 𝐵 est égal à la longueur du côté opposé divisé par la longueur de l'hypoténuse.
En géométrie euclidienne, la somme des angles d'un triangle est égale à l'angle plat, soit 180 degrés ou π radians.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
L'aire d'un triangle est égale au produit du demi-périmètre par le rayon du cercle inscrit.
La hauteur relative fixe un plafond à ne pas dépasser défini en fonction de la largeur de la voie et du recul de la construction. Elle affirme la prise en compte de l'ambiance urbaine, de l'harmonie architecturale du secteur (espace public, voirie,…)
Calculer l'aire d'un triangle quelconque ou équilatéral
Soit S l'aire de ce triangle. S = (AB x h) / 2 = (10 x 6) / 2 = 30 cm². En effet, AB peut aussi déterminer la longueur d'un rectangle dont h déterminerait sa largeur. De fait, multiplier AB par h, c'est calculer l'aire de ce rectangle.
B – Dans le cas général
Appliquer le théorème de Pythagore dans les trois triangles de la figure. Prouver alors l'égalité :AB2 = 2 x MH2 + a2 + b2. En déduire une expression réduite de MH en fonction des nombres a et b.