Il s'agit de triangles rectangles dont les côtés de l'angle droit ont pour mesures a et b. Applique la formule du calcul de l'aire d'un triangle rectangle : aire = (a × b) ÷ 2. Commence par calculer 2 × aire. C'est le résultat de a × b.
Le théorème de Pythagore
Pour un triangle rectangle dont l'on nomme les côtés A, B et C, cela donne la formule : A² + B² = C².
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
La formule de l'aire d'un triangle est : Aire d'un triangle = (Base × hauteur) : 2 soit : A = (B × h) : 2. Pour calculer l'aire d'un triangle rectangle, on peut utiliser la formule de l'aire d'un rectangle, mais il faudra diviser le résultat obtenu par 2.
aire du triangle = 0,5 * b * h, où b est la longueur de la base du triangle, et h est la hauteur du triangle.
La formule pour calculer l'aire d'un carré est c × c, « côté fois côté ». Ex. : un carré de 5 cm de côté a pour aire 5 × 5 = 25 cm2. La formule pour calculer l'aire d'un rectangle est L × l, « longueur fois largeur ». Ex. : un rectangle de longueur 8 m et de largeur 5 m a pour aire 8 × 5 = 40 m2.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c). La formule que tu utiliseras dépendra des données présentées.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Aire = √p(p-a)(p-b)(p-c)
Où a, b et c sont les longueurs des côtés du rectangle et où p est la moitié du périmètre du triangle.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Le théorème sert, lorsque nous savons que le triangle est rectangle, à calculer une longueur connaissant la longueur des deux autres côtés. Le triangle ABC est rectangle en A d'après le théorème de Pythagore on a : BC² = AB² + AC² 5² = 3² + AC² 25 = 9 + AC² AC² = 25 – 9 = 16 Donc AC = √ cm.
Par exemple, il permet : de calculer la longueur de l'hypoténuse à partir des longueurs des deux autres côtés, de vérifier la présence d'un angle droit dans un triangle, à un GPS de calculer la distance qui sépare une voiture ou un téléphone de la ville de Limoges, par exemple, etc.
L'aire du quadrilatère est égale au produit de la diagonale par la somme des longueurs des hauteurs.
Exemple : Si une pièce rectangle mesure 5 mètres de long et 3 mètres de large, on multiplie 5 par 3, et on obtient 15. La pièce mesure donc 15 mètres carrés (m²).
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
On connaît la longueur L et le périmètre P d'un rectangle. Pour calculer sa largeur l : on calcule le demi-périmètre (P ÷ 2), puis on soustrait la longueur L au demi-périmètre.
Une expression littérale est une expression contenant une ou plusieurs lettres, ces lettres désignant des nombres qui peuvent varier. Ces lettres sont appelées « variables ». L'expression A est une expression littérale : A=4a+2b-7.
Définition Calcul de la longueur
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
Comme on connaît les longueurs des trois côtés du triangle, on peut utiliser la formule de Héron pour déterminer son aire. Selon la formule de Héron, l'aire, 𝐴 , d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle.
La formule trigonométrique de l'aire d'un triangle est A i r e s i n = 1 2 𝑎 𝑏 𝐶 , où 𝑎 et 𝑏 sont les longueurs des deux côtés et 𝐶 est la mesure de l'angle compris entre eux.
Calculer l'aire (en cm2) d'un triangle avec une base de 14 cm et une hauteur de 9 cm. cliquer ici pour la solution Aire d'un triangle = ½ × Base × Hauteur = ½ × 14 × 9 = 63 cm2. où a, b et c sont les longueurs des côtés du triangle, et p = ½ (a + b + c) est le demi-périmètre du triangle.
L'aire d'un triangle est, en géométrie euclidienne, une mesure de la surface plane déterminée par trois points et les segments joignant ces points. L'intérêt de l'aire d'un triangle provient du fait que tout polygone peut être scindé en triangles.
Par exemple, ∆ = p × a/2 , où ∆, est l'aire d'un polygone régulier dont p est le périmètre et a est l'apothème (la distance entre le centre du polygone et le milieu d'un côté).
La formule pour calculer l'aire d'un trapèze rectangle est : A = (b1 + b2) * h / 2, où b1 et b2 correspondent aux grandes bases et h correspond à la hauteur.