Soit u et v deux vecteurs de coordonnées u (xy) et v (x′y′). Alors u ⋅v =xx′+yy′. Exemple : Soit u et v deux vecteurs de coordonnées u (20,5) et v (3−4). Alors u ⋅v =2×3+0,5×(−4)=6−2=4.
Comment calculer un produit scalaire ? Pour calculer un produit scalaire, il faut appliquer la bonne formule en fonction des données que nous avons. Autrement dit, si nous avons les composantes des vecteurs, nous utiliserons la formule u → ⋅ v → = u x v x + u y v y .
Pour la multiplication/division d'un vecteur par un nombre réel, il suffit de multipler/diviser les coordonnées. Exemples avec les points A(-4;6),B(-1;9),C(1;9) de la figure précédente : 2 AB → ( 2 ( x B - x A ) ; 2 ( y B - y A ) ⇒ 2 AB → ( 6 ; 6 )
Pour calculer les coordonnées d'un vecteur à partir de deux points, nous devons soustraire les coordonnées du point de départ des coordonnées du point d'arrivée. Autrement dit, si nous disposons des points A ( x A , y A ) et B ( x B , y B ) , alors nous avons le vecteur A B → = ( x B − x A y B − y A ) .
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
2- Coordonnées du vecteur défini par deux points
Dans le plan muni du repère (O,I,J) on considère les points A(xA, yA) et B(xB, yB). Les coodonnées du vecteur AB sont (xB – xA, yB – yA).
Produit scalaire et vecteurs colinéaires
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
La multiplication d'un vecteur par un scalaire consiste à multiplier ses composantes par ce scalaire. Lors d'une multiplication d'un vecteur par un scalaire, le scalaire peut être distribué sur les composantes du vecteur : 𝑘 ⃑ 𝑉 = 𝑘 ( 𝑥 , 𝑦 , 𝑧 ) = ( 𝑘 𝑥 , 𝑘 𝑦 , 𝑘 𝑧 ) . 𝑘 ⃑ 𝑉 = 𝑘 ( 𝑥 , 𝑦 , 𝑧 ) = ( 𝑘 𝑥 , 𝑘 𝑦 , 𝑘 𝑧 ) .
le produit scalaire de deux vecteurs est un nombre réel; les deux opérandes d'un produit scalaire sont des vecteurs; les opérandes de la multiplication d'un vecteur par un scalaire sont un vecteur et un nombre réel; le résultat de la multiplication d'un vecteur par un scalaire est un vecteur.
Un produit scalaire est une forme bilinéaire symétrique définie positive sur un espace vectoriel sur les nombres réels. Les propriétés algébriques vues dans le cas de la dimension 2 ou 3 sont suffisantes pour définir un produit scalaire dans un espace vectoriel réel quelconque.
Soient u et v , deux vecteurs de coordonnées respectives (xy) et (x′y′). Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Le double produit vectoriel permet de calculer un produit vectoriel effectué deux fois. La formule du double produit vectoriel est u → ∧ ( v → ∧ w → ) = ( u → ⋅ w → ) v → − ( u → ⋅ v → ) w → .
Si l'on connaît l'angle B A C ^ \widehat{BAC} BAC, on peut calculer le produit scalaire A B → ⋅ A C → \overrightarrow{AB} \cdot \overrightarrow{AC} AB⋅AC en utilisant les longueurs A B AB AB et A C AC AC ainsi que le cosinus de l'angle B A C ^ \widehat{BAC} BAC(Voir Définition du produit scalaire.)
Le produit scalaire de deux vecteurs ⃑ 𝑢 et ⃑ 𝑣 est égal au produit de leurs normes et du cosinus de l'angle qu'ils forment : ⃑ 𝑢 ⋅ ⃑ 𝑣 = ‖ ‖ ⃑ 𝑢 ‖ ‖ ⋅ ‖ ‖ ⃑ 𝑣 ‖ ‖ ⋅ 𝜃 , c o s où 𝜃 est l'angle entre ⃑ 𝑢 et ⃑ 𝑣 .
Les coordonnées d'un vecteur v de notre espace vectoriel favori R2 dans une base (i,j) sont deux nombres x et y qui vérifient l'équation caractéristique des coordonnées : v = xi + yj. La recherche des coordonnées est donc un probl`eme de décomposition linéaire. (1 2 ) = x (3 4 ) + y (5 6 ) .
Coordonnées d'un vecteur
Avec deux vecteurs perpendiculaires de même origine et de même longueur, on peut former ce que l'on appelle un repère orthogonal. Si de plus, les vecteurs et sont de longueur 1 (ou de norme 1), on dit que le repère est orthonormé.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Deux vecteurs →u et →v de l'espace sont orthogonaux si et seulement si →u. →v=0. . Deux droites D et Δ de vecteurs directeurs respectifs →u et →v sont dites orthogonales lorsque →u et →v le sont.
Par convention les coordonnées géographiques s'écrivent ainsi : 45° 45′ 35″ nord, 4° 50′ 32″ est. Dans cet exemple, il faut lire « quarante-cinq degrés, quarante-cinq minutes, et trente-cinq secondes de latitude nord, et quatre degrés, cinquante minutes et trente-deux secondes de longitude est. »
La norme de 𝐴𝐵 est la racine carrée de quatre au carré plus 10 au carré. Quatre au carré est 16 et 10 au carré est 100, donc la norme de 𝐴𝐵 est la racine carrée de 116.
Tout vecteur peut être exprimé sous la forme 𝑥 ⃑ 𝑖 + 𝑦 ⃑ 𝑗 + 𝑧 ⃑ 𝑘 . On peut, alternativement, l'écrire sous forme de composantes comme suit : ( 𝑥 , 𝑦 , 𝑧 ) et 𝑥 𝑦 𝑧 .
Coordonnées de la somme de deux vecteurs
alors la somme des deux vecteurs a pour coordonnées u → + v → ( x + x ′ y + y ′ ) .
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).