Le produit matriciel s'en d duit : le produit de la matrice A (n × m) par la matrice B (m × p) est la matrice C (n × p) telle que l'élément Cij est égal au produit scalaire de la ligne i de la matrice A par la colonne j de la matrice B.
On calcule la matrice produit C = A B C=AB C=ABC, equals, A, B. Chacun des éléments de la matrice C est le produit scalaire du vecteur associé à l'une des lignes de la matrice A et du vecteur associé à l'une des colonnes de la matrice B.
La matrice d'un produit scalaire dans une base quelconque est toujours inversible. En effet, si AX = 0, alors `a fortiori t XAX = 0, c'est `a dire x2 = 0, et donc X = 0. ∀X,Y ∈ Mn1(R), t XAY = t XBY Alors A = B. Si A = Mate((|)), B = Mate((|)), P = Pe↦→f , alors B = t P AP .
Dans un repère orthonormé, le produit scalaire de deux vecteurs est égal à la somme des produits de leurs composantes correspondantes. →u⊙→v=uxvx+uyvy.
Calculer le produit scalaire ⋅ AB AC et en déduire la mesure α en degrés de l'angle BAC à 0,1 degré près. AB(–4 ; –2) et AC(4 ; –6), donc ⋅ − × × AB AC = 4 4 + (–2) (–6) = –4. On sait que ⋅ × × α AB AC = AB AC cos où α est la mesure de l'angle BAC.
Comme on vient de le mentionner, le produit scalaire s'écrit à l'aide du symbole ⋅ .
Le produit scalaire permet d'exploiter les notions de la géométrie euclidienne traditionnelle : longueurs, angles, orthogonalité en dimension deux et trois, mais aussi de les étendre à des espaces vectoriels réels de toute dimension, et (avec certaines modifications dans la définition) aux espaces vectoriels complexes.
On utilise la relation de Chasles pour faire apparaître des sommes des vecteurs et simplifier le produit scalaire en utilisant des vecteurs orthogonaux. Les droites (DE) et (CF) sont donc perpendiculaires.
Si le produit scalaire de deux vecteurs est nul, on dit que ces vecteurs sont orthogonaux. Pour que deux vecteurs non nuls aient un produit scalaire nul, il faut que leurs droites d'application soient perpendiculaires (ainsi, le projeté orthogonal du deuxième sur le premier est un point, de longueur nulle).
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Les vecteurs doivent avoir la même dimension. Le produit matriciel s'en d duit : le produit de la matrice A (n × m) par la matrice B (m × p) est la matrice C (n × p) telle que l'élément Cij est égal au produit scalaire de la ligne i de la matrice A par la colonne j de la matrice B.
Imaginons que l'on note C la matrice A x B : C = A x B. Le coefficient ci,j de la matrice C sera calculé en multipliant le ième ligne de la matrice de gauche avec la jème colonne de la matrice de droite. On multiplie tout simplement terme à terme chaque coefficient de la ligne et de la colonne.
il y a des diviseurs de O: si un produit de deux matrices est nul (toutes les composantes sont nulles) il peut arriver qu'aucune des deux matrices ne soit nulle.
Le produit de deux matrices ne peut se définir que si le nombre de colonnes de la première matrice est le même que le nombre de lignes de la deuxième matrice, c'est-à-dire lorsqu'elles sont de type compatible.
Propriété : Commutativité des matrices diagonales
Si ? et ? sont deux matrices diagonales de dimension ? × ? , alors le produit de ces deux matrices est commutatif. En d'autres termes, ? ? = ? ? .
u || = |k| || u || (k réel ou complexe). Normer un vecteur non nul, c'est le multiplier par l'inverse de sa norme. On obtient alors un vecteur unitaire (de norme 1). Une base d'un espace vectoriel est dite orthonormale ou orthonormée si elle est orthogonale et si ses éléments sont unitaires (de norme 1).
Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. Définition : Soit un vecteur u ! et deux points A et B tels que u ! = AB " !
Deux vecteurs sont perpendiculaires (ou orthogonaux) lorsqu'ils se coupent à angle droit. Ainsi, l'angle qui est formé par l'intersection de deux vecteurs orthogonaux est de 90∘. 90 ∘ . Pour déterminer si deux vecteurs sont perpendiculaires, on peut effectuer le produit scalaire de ceux-ci.
Si l'on connaît l'angle B A C ^ \widehat{BAC} BAC, on peut calculer le produit scalaire A B → ⋅ A C → \overrightarrow{AB} \cdot \overrightarrow{AC} AB⋅AC en utilisant les longueurs A B AB AB et A C AC AC ainsi que le cosinus de l'angle B A C ^ \widehat{BAC} BAC(Voir Définition du produit scalaire.)
Pour cela, nous allons d'abord calculer le produit scalaire : →u⋅→v=xx′+yy′=7×4+4×(−4)=12. En effet, →u(74) car il faut avancer de 7 unités en abscisse et de 4 unités en ordonnées pour aller du point A au point B. De même, →v(4−4). Or, nous savons aussi que:→u⋅→v=‖→u‖×‖→v‖×cos(→u,→v).
A
On appelle produit scalaire de u et v le réel, noté u ⋅v , défini par : u ⋅v =∥u ∥×∥v ∣×cos(u ,v ).
Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.