Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs. Pour calculer les coordonnées du produit d'un vecteur par un scalaire, on multiplie chacune des coordonnées par le scalaire.
Calcul vectoriel - Points clés
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 . Pour calculer les coordonnées d'un vecteur, nous utilisons la formule A B → = ( x B − x A y B − y A ) .
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Les coordonnées d'un vecteur v de notre espace vectoriel favori R2 dans une base (i,j) sont deux nombres x et y qui vérifient l'équation caractéristique des coordonnées : v = xi + yj. La recherche des coordonnées est donc un probl`eme de décomposition linéaire. (1 2 ) = x (3 4 ) + y (5 6 ) .
Pour la multiplication/division d'un vecteur par un nombre réel, il suffit de multipler/diviser les coordonnées. Exemples avec les points A(-4;6),B(-1;9),C(1;9) de la figure précédente : 2 AB → ( 2 ( x B - x A ) ; 2 ( y B - y A ) ⇒ 2 AB → ( 6 ; 6 ) -3 AC → ( -3 ( x C - x A ) ; -3 ( y C - y A ) ) ⇒ -3 AC → ( -18 ; 12 )
Pour indiquer les coordonnées du vecteur , on utilise la notation ou . On considère deux points A(xA ; yA) et B(xB ; yB). Le vecteur a pour coordonnées (xB – xA ; yB – yA ). Soient (x ; y) et (x' ; y') deux vecteurs du plan muni d'une base orthonormée ( , ).
2- Coordonnées du vecteur défini par deux points
Dans le plan muni du repère (O,I,J) on considère les points A(xA, yA) et B(xB, yB). Les coodonnées du vecteur AB sont (xB – xA, yB – yA).
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Il y a deux formules élémentaires pour le produit scalaire qui sont couramment utilisées. Considérons les vecteurs u → = ( u x u y ) et v → = ( v x v y ) . Une première formule pour le produit scalaire est u → ⋅ v → = u x v x + u y v y .
Soient u et v , deux vecteurs de coordonnées respectives (xy) et (x′y′). Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Voici des exemples de formats qui fonctionnent : Degrés décimaux (DD) : 41.40338, 2.17403. Degrés, minutes et secondes (DMS) : 41°24'12.2"N 2°10'26.5"E. Degrés et minutes décimales (DMM) : 41 24.2028, 2 10.4418.
Soit deux vecteurs →u et →v; le nombre réel résultant de l'opération notée →u⋅→v et telle que →u⋅→v=‖→u‖⋅‖→v‖cosθ, où ‖→u‖ désigne la norme du vecteur u, ‖→v‖ désigne la norme du vecteurv et θ est la mesure de l'angle formé entre les directions des deux vecteurs.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Pour indiquer les coordonnées du vecteur on utilise la notation : Exemple : Sur le graphique ci-dessous, lire les coordonnées des vecteurs . Etant donnés deux point du plan A(xA ; yA) et B(xB ; yB) , le vecteur a pour coordonnées . Dans un plan muni d'un repère on a les points E(3 ;4) F(-2 ;1) et G(-4 ;2).
Tout vecteur peut être exprimé sous la forme 𝑥 ⃑ 𝑖 + 𝑦 ⃑ 𝑗 + 𝑧 ⃑ 𝑘 . On peut, alternativement, l'écrire sous forme de composantes comme suit : ( 𝑥 , 𝑦 , 𝑧 ) et 𝑥 𝑦 𝑧 .
Tout vecteur non nul v est la multiplication du vecteur unitaire u = v/║v║ par un nombre réel strictement positif, à savoir la norme ║v║ de v. v = ║v║u. Pour tout vecteur ayant un sens opposé à v, on a :v = -║v║u.
Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Tracer le représentant du vecteur
On trace une flèche issue du premier point jusqu'au deuxième point. On trace une flèche issue du premier point jusqu'au deuxième point. On nomme le représentant du nom du vecteur.
La position d'un point est donnée par un couple de nombres, les coordonnées (x,y) . Le premier nombre du couple correspond à la position horizontale du point (sa valeur sur l'axe des x ) alors que le deuxième nombre correspond à sa position verticale (sa valeur sur l'axe des y ).