On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
L'image de 4 par la fonction f est 0.
Calculons l'image de 3 par la fonction f. Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 3. Il s'agit donc de remplacer x par 3 dans l'expression de f. L'image de 3 par la fonction f est donc égal à 5.
L'image de − 5 par la fonction f est 10,5.
On dit que 36 est l'image de 6 par la fonction f.
On dit que 9 est l'image de -3 par la fonction f.
Si M a pour abscisse x, alors son ordonnée est f(x). donc l'image de 2 par f est 2.
Réponse. L'image de -7 par la fonction f est 17.
On lit donc que l'image de 7 est 4. On peut noter : (7) = 4.
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
L'image de −2 par la fonction f est −2.
L'image de -2 par la fonction h est 21.
Dans une fonction, une image est la grandeur obtenue à partir d'une fonction appliquée à un antécédent. Un nombre x ne peut avoir qu'une seule image y par la fonction f.
Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 4. Il s'agit donc de remplacer x par 4 dans l'expression de f. L'image de 4 par la fonction f est donc égal à -20.
Une fonction affine f est une fonction dont la forme algébrique s'écrit f(x) = ax+b et qui est donc déterminée par les deux nombres a et b. Le nombre a est le coefficient directeur et le nombre b est l'ordonnée à l'origine. Ce vocabulaire est lié à la représentation graphique d'une fonction affine qui est une droite.
Cette réponse est verifiée par des experts
Pour calculer l'image de 12 par la fonction f(x)=3x, il suffit de remplacer x par 12 dans f(x)=3x. Sur le graphique ci-joint : la représentation graphique de la fonction h(x) = x+40.
L'antécédent de 20 par la fonction g est 3. Lire des images sur une représentation graphique. On cherche l'image du nombre 2. on repère le nombre 2 sur l'axe des abscisses et on dessine un chemin vertical jusqu'à la courbe.
Un exemple : h(1) = -2 -> l'image de 1 par h est -2. L'antécédent de -2 par h est 1. 3) L'image par h de 3 est 2.
l'image du nombre 10 est obtenue en calculant f(10) = 2x10 + 3 soit f(10) =23 donc l'image du nombre 10 par cette fonction f est 23.
Pour calculer l'image de f (par exemple), c'est à dir calculer f(2), on remplace x par 2 dasn l'expression de f(x), tout simplement.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.