Pour déterminer un antécédent d'un nombre à l'aide d'une formule, il faut remplacer f ( x ) f(x) f(x) par la valeur du nombre dans la formule puis trouver une valeur de x qui la vérifie.
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
On cherche le ou les antécédents du nombre 2. on repère le nombre 2 sur l'axe des ordonnées et on dessine un chemin horizontal jusqu'à la courbe. on poursuit ensuite le chemin verticalement jusqu'à l'axe des abscisses et on lit le nombre cherché.
Le seul antécédent de 4 par f est -2.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
Comment calculer un antécédent d'une fonction ? Trouver le ou les antécédents d'une valeur a par une fonction f revient à résoudre équation f(x)=a f ( x ) = a . Exemple : Calculer l' antécédent de 1 par la fonction affine f(x)=2x+1 f ( x ) = 2 x + 1 c'est résoudre 2x+1=1⟺x=0 2 x + 1 = 1 ⟺ x = 0 .
L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0. L'antécédent de 3 par f est 6. Soit f la fonction définie sur \mathbb{R}\backslash\left\{ -2\right\} par f\left(x\right)=\dfrac{x-1}{x+2}.
7 a pour antécédent – 2 par la fonction f .
2 a donc deux antécédents qui sont 1 et 4.
, on appelle antécédent (par f) d'un élément y de F tout élément dont l'image par f est y, c'est-à-dire tout élément x de E tel que f(x) = y.
Réponse : pour déterminer l'antécédent d'un nombre par une fonction linéaire, il faut résoudre une équation. Soit x l'antécédent cherché, on a f(x) = 48 autrement dit 6x = 48, soit x = 486 = 8, donc l'antécédent de 48 par f est 8.
Principe. Pour calculer l'image de f (par exemple), c'est à dir calculer f(2), on remplace x par 2 dasn l'expression de f(x), tout simplement.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
L'image de 4 par la fonction f est 0.
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Pour trouver le (ou les) antécédent(s)de − 125 : on cherche − 125 sur la deuxième ligne du tableau et on lit le (ou les) antécédent(s) sur la première ligne ; un antécédent de − 125 est − 3 et on écrit h(− 3) = − 125 (ou h : − 3 − 125).
A partir de la définition de la fonction
Exemple : Calculer l'image de 2 par la fonction affine f(x)=3x+1 f ( x ) = 3 x + 1 c'est calculer 3×2+1=7 3 × 2 + 1 = 7 . Donc l'image de 2 par f est f(2)=7 f ( 2 ) = 7 .
L'image de 3 par la fonction f est 0.
L'image de 1 par f vaut 1² = 1, soit f(1 )= 1.
Réponse : pour déterminer l'antécédent d'un nombre par une fonction affine, il faut résoudre une équation. Soit x l'antécédent cherché, on a f(x) = 22 autrement dit 7x - 6 = 22, soit 7x = 28 et donc x=287 = 4, donc l'antécédent de 22 par f est 4.
- Si la fonction f est définie par la formule f(x) = 2x +3 alors: l'image du nombre 0 est obtenue en calculant f(0) = 2x0 + 3 soit f(0) = 3 donc l'image du nombre 0 par cette fonction f est 3.
Les antécédents de 1 sont 1 et -1. L'antécédent de 0 est 0. -1 n'admet pas d'antécédent car l'équation x² = -1 n'admet pas de solution (et oui un carré est TOUJOURS positif !)