Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Pour cela, il est nécessaire de connaître la mesure d'un angle et la longueur du côté opposé ou de l'hypoténuse. Pour calculer la longueur d'un côté, on utilise le calcul en croix. AC = AB× tan ABC = 5 × tan 45° = 5 Enfin, on peut utiliser la tangente pour calculer des angles au sein d'un triangle rectangle.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
Comment mesure-t-on un angle? Un angle se mesure avec un rapporteur. Le rapporteur mesure l'amplitude de l'angle en degré (0 à 360°). L'amplitude de l'angle est formé par l'écartement des 2 côtés de l'angle.
Le côté opposé à un angle, dans un triangle rectangle, est le côté qui ne touche pas cet angle. Par exemple, dans le triangle AB, le côté opposé à l'angle  est [BC]. Le côté adjacent à un angle, dans un triangle rectangle, est le côté qui touche l'angle mais qui n'est pas l'hypoténuse.
Sinus = côté opposé / hypoténuse.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
Ainsi donc, l'équation se présente simplifiée : a / sin(α) = c / 1 ou encore a / sin(α) = c. Trouvez l'hypoténuse en divisant la longueur du côté a par le sinus de l'angle α. Il faut opérer en deux temps : on calcule en premier sin(α), que l'on va inscrire, puis on divise la longueur a par ce résultat obtenu.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Cette relation est valable pour tous les côtés d'un triangle quelconque, d'où : b2 = a2 + c2 - 2ac cos. B.
Lorsque, dans un triangle quelconque, on connaît les longueurs a et b de deux côtés ainsi que l'angle adjacent à ces deux côtés, on peut calculer la longueur c du troisième côté en utilisant le théorème d'Al-Kashi. On considère le triangle ABC suivant tel que b = 2, c=4 et \widehat{A}= \dfrac{\pi}{4}.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.
On utilise cette loi quand on connait la mesure d'un angle et celle de son côté opposé ainsi que n'importe quelle autre valeur de côté (à gauche) ou d'angle (à droite) du triangle. En bref, il faut une paire (côté, angle) qui est complète.
La loi des cosinus est une formule qui permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Elle est donc valable pour tous les triangles.
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
Le sinus de 30 degrés est égal à 0,5.
On appelle côté opposé à l'angle le côté [AC]; le côté adjacent à l'angle est le côté qui forme l'angle et qui n'est pas l'hypoténuse, soit [AB]. Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Dans le triangle initial, le côté 𝑎 est l'hypoténuse et le côté opposé à l'angle 𝐵 est le côté 𝑏 . Ainsi, le sinus de l'angle 𝐵 est égal à la longueur du côté opposé divisé par la longueur de l'hypoténuse.
Le sinus de 45 degrés est 0,70710 (arrondi à cinq décimales).
75 degrés est simplement 75. Et puis quatre divisé par 60 égale 0,06666. Et 12 divisé par 3600 égale 0,00333. Donc, en ajoutant ces chiffres entre parenthèses, on obtient sinus 75.06999.
Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm.
Définition Calcul de la longueur
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
tan \hat{S} = \frac{RT}{RS} ; d'où RS = 6 (arrondi à l'unité). On connaît le côté opposé à l'angle \hat{S} et on cherche le côté adjacent. Il faut donc utiliser la tangente de l'angle \hat{S}.