On calcule la valeur d'une expression littérale lorsque l'on attribue une valeur aux lettres contenues dans l'expression. Si une même lettre est utilisée plusieurs fois, on lui attribue le même nombre à chaque fois. Exemple 1 : Calculer l'expression A = 5 × ( 6 − x ) + 3 x − 7 y lorsque et .
Calculer la valeur d'une expression littérale, c'est attribuer un nombre à chaque lettre de l'expression afin d'effectuer le calcul. Calculer A = − x2 + 3(x + 6) + 4y lorsque x = − 4 et y = − 8. A = − x2 + 3 × (x + 6) + 4 × y On écrit les signes × sous−entendus.
La multiplication est distributive par rapport à la soustraction, donc pour tous nombres a, b et c, on a : a × (b − c) = a × b − a × c. L'expression 2 + 3 − 4 + (10 + 5) est une expression littérale car elle comporte des parenthèses. Une expression littérale ne comporte pas de nombres.
Ordonner une expression littérale revient à écrire les termes dans l'ordre de puissances décroissantes ou croissantes de x. x = x1 et 1 = x0. Exemple : Ordonner l'expression 23x – 56 − 2x2. 23x – 56 − 2x2 n'est pas une expression ordonnée car elle est égale à 23x1 − 56x0 − 2x2.
– entre un nombre et une lettre : 3 x a ou a x 3 s'écrit 3a ; – entre des nombres, des lettres et des parenthèses : 4 x a x (2x + 1) s'écrit 4a(2x+1). · On conserve les parenthèses et le signe x dans certains cas : 5 x (-8) : des parenthèses pour séparer x et – ; 4 x 35 : sans le signe x on lirait 435.
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Réduire une expression littérale, c'est regrouper les termes « semblables » et effectuer les calculs. Les termes « semblables » sont ici ceux qui ne contiennent que la variable a. B = 5a − 7b − 2ab.
Définition : Une expression littérale est un calcul contenant une ou plusieurs lettres qui désignent des nombres inconnus. On considère le programme de calcul : - Choisir un nombre - Ajouter 5 - Multiplier par 3 - Soustraire le double du nombre de départ.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Lorsqu'on simplifie une expression littérale, les nombres doivent être multipliés entre eux. Simplification de l'expression littérale D. On commence par placer les nombres devant les lettres classées par ordre alphabétique. On supprime ensuite les signes de multiplication inutiles et on multiplie les nombres entre eux.
Le calcul littéral permet de généraliser un résultat qui dépend d'une valeur variable, que l'on note souvent x, et de résoudre une équation ou une inéquation. Le signe est supprimé entre deux lettres ou devant une lettre, et entre deux parenthèses ou devant une parenthèse.
Un nombre pair s'écrit sous la forme 2n. Un nombre impair s'écrit sous la forme 2n +1.
L'algèbre fit un bond prodigieux au xvie siècle grâce aux mathématiciens français François Viète (1540-1603) et Albert Girard (1595-1632), qui ont divulgué le calcul littéral : au lieu de poser et résoudre un problème en langage courant, ce qui devient vite lourd, ils utilisèrent des chiffres et des lettres.
Une expression littérale (aussi appelée formule) est une séquence de calculs comprenant à la fois des valeurs numériques et une ou plusieurs lettres. Ces lettres représentent des nombres. 2x + 31{,}7 - 11a est une expression littérale.
On commence par faire les calculs entre parenthèses ; à l'intérieur des parenthèses, la multiplication est prioritaire. Une fois les parenthèses supprimées, on se retrouve avec une soustraction et une addition que l'on effectue dans l'ordre d'écriture.
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
on peut supprimer les parenthèses précédées du signe + sans changer les signes des opérations situées dans la parenthèse, on peut supprimer les parenthèses précédées du signe − à condition de changer les signes des opérations situées dans la parenthèse.
Pour simplifier une racine carrée, on recherche des facteurs carrés parmi les diviseurs du nombre sous la racine. Par exemple, la racine carrée de 48 peut être simplifiée en séparant les facteurs carrés : √(16 × 3) = √16 × √3 = 4√3.
Simplifier une fraction, c'est l'écrire avec un numérateur et un dénominateur plus petits. En pratique, cela revient à diviser le numérateur et le dénominateur par un même nombre. Simplifier . 15 et 75 sont divisibles par 5 car leurs chiffres des unités est 5.
Ici, le facteur commun est (x + 3), avec deux termes. Pour factoriser, on va développer et réduire l'expression en utilisant le même procédé que pour un seul terme (2x + 4 = x(x+2)), mais il faudra insérer des crochets entre les parenthèses afin de bien isoler les termes sans se tromper.
Réduire une expression signifie l'écrire sous la forme la plus simple possible, que l'on appellera la forme réduite, c'est-à-dire regrouper les termes possédant les mêmes lettres affectées des mêmes exposants. Pour réduire B, il suffit de « compter les » ! Il y en a 7 et 3, donc 10 en tout !
"Un nombre impair = toujours un nombre pair +1 ou -1"
La mathématicienne prend ensuite un autre exemple : "Si on prend 275, ça équivaut à 274 (nombre pair) + 1. On peut aussi enlever 1 à 275, on obtient 275 - 1 = 274, qui est un nombre pair.
Un nombre entier exprimé dans le système de numération décimal est pair ou impair si son dernier chiffre est pair ou impair. Suivant cela, si le dernier chiffre est 0, 2, 4, 6 ou 8 alors le nombre est pair ; si le dernier chiffre est 1, 3, 5, 7 ou 9 alors le nombre est impair.