Dans un repère orthonormé du plan, la distance entre deux points A et B de coordonnées respectives (xA;yA) et (xB;yB) est donnée par : AB=(xB−xA)2+(yB−yA)2 . On traite le cas où xB>xA et yB>yA. On considère le point C de coordonnées (xB;yA).
On veut calculer la mesure exacte de la distance AC. [AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2.
La distance se calcule le plus souvent à l'aide de la formule suivante : d = v × t dans laquelle « d » est la distance, « v », la vitesse et « t » le temps de parcours.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
La relation de Pythagore met en relation les trois côtés du triangle rectangle de la manière suivante : La somme des carrés des mesures des cathètes est égal au carré de la mesure de l'hypoténuse.
Qu'est-ce que le théorème de Pythagore ? Le théorème de Pythagore s'applique aux triangles rectangles. Son principe : dans un triangle rectangle, le carré de la longueur de l'hypoténuse (le plus grand côté) est égal à la somme des carrés des longueurs des deux autres côtés.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Lorsque, dans un triangle quelconque, on connaît les longueurs a et b de deux côtés ainsi que l'angle adjacent à ces deux côtés, on peut calculer la longueur c du troisième côté en utilisant le théorème d'Al-Kashi. On considère le triangle ABC suivant tel que b = 2, c=4 et \widehat{A}= \dfrac{\pi}{4}.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c). La formule que tu utiliseras dépendra des données présentées.
Pour calculer cette distance, on multipliera la vitesse moyenne par la durée en heures . On peut utiliser la proportionnalité : En 1 heure il a parcouru 85 km. En 2 heures il a parcouru 85 km x 2 = 170 km.
La distance entre les nombres a et b, notée d(a; b), est égale à la distance AB. (L'unité est donnée par la longueur OI du repère). d(a;b) = AB. Pour calculer la distance de A à B, on retranche l'abscisse la plus petite à l'abscisse la plus grande.
Endomondo est idéal pour la course à pied, le cyclisme, la marche ou n'importe quelle activité basée sur la distance. Munie d'un GPS, l'application suit la distance parcourue, la durée, la dépense calorique, et ce, tout en fournissant des commentaires audio sur vos performances.
La réciproque de Pythagore : la formule
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ».
Dans un repère orthonormé du plan, la distance entre deux points A et B de coordonnées respectives (xA;yA) et (xB;yB) est donnée par : AB=(xB−xA)2+(yB−yA)2 .
Pour cela, il est nécessaire de connaître la mesure d'un angle et la longueur du côté opposé ou de l'hypoténuse. Pour calculer la longueur d'un côté, on utilise le calcul en croix. AC = AB× tan ABC = 5 × tan 45° = 5 Enfin, on peut utiliser la tangente pour calculer des angles au sein d'un triangle rectangle.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Le côté opposé à un angle, dans un triangle rectangle, est le côté qui ne touche pas cet angle. Par exemple, dans le triangle AB, le côté opposé à l'angle  est [BC].
Utilisation du théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Pythagore est bien connu pour le théorème de géométrie qui porte son nom : le théorème de Pythagore, qui a pour principe : "dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés".
Théorème : Si dans un triangle, le carré d'un côté est égal à la somme des carrés des deux autres côtés, alors ce triangle est rectangle et l'hypoténuse est le côté le plus long. Conclusion : ABC est un triangle rectangle.
Le théorème de Pythagore et sa réciproque s'utilisent dans des contextes différents: Le théorème de Pythagore permet de trouver la longueur d'un côté d'un triangle rectangle. La réciproque du théorème de Pythagore permet de vérifier qu'un triangle est rectangle.