Deux échantillons E1 et E2 sont dit appariés lorsque chaque valeur x1,i de E1 est associée à une valeur x2,i de E2 (appariés = associés par paire : variables dépendantes). Par exemple E1 peut être un groupe de malades avant traitement et E2 le groupe des mêmes malades après traitement.
Le test-t de Student est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
L'analyse de variance ou ANOVA permet de faire une comparaison des moyennes entre plusieurs populations. Dans le cas particulier où l'on ne désire comparer entre-elles que 2 populations, on utilise généralement le test de Student, une version particulière de l'ANOVA.
Il est possible de faire des comparaisons de moyenne. Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
Il faut commencer par tester la normalité de la distribution à l'aide du test de Shapiro-Wilk ou du test de Kolmogorov-Smirnov. Si l'hypothèse de normalité n'est pas rejetée, on peut utiliser un test paramétrique. Sinon, on doit utiliser un test non paramétrique.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
La moyenne est calculable pour les variables numériques, qu'elles soient discrètes ou continues. On l'obtient simplement en additionnant l'ensemble des valeurs et en divisant cette somme par le nombre de valeurs. Ce calcul peut être fait à partir des données brutes ou d'un tableau de fréquences.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
Test statistique utilisé lorsque la ou les variables utilisées suivent une distribution prédéterminée. À l'exception du cas où la ou les variables suivent une loi normale, les tests paramétriques requièrent des échantillons de taille importante (> 30 observations).
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Le test du khi² a une puissance plus importante que le test exact de Fisher. En d'autres termes, il est plus apte à rejeter l'hypothèse nulle lorsqu'elle est fausse.
Disponible sous différentes formes en fonction de la formule de calcul utilisée, ce test, également connu sous le nom de test-t, vous permet de déterminer si une différence entre deux nombres est vraiment significative d'un point de vue statistique.
Le test de Fisher est utilisé par exemple pour comparer deux modèles, et voir si un modèle est définitivement moins précis qu'un autre.
La procédure Test U de Mann-Whitney utilise le rang de chaque observation pour tester si les groupes sont issus de la même population. Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente.
Vous utilisez un test du khi-deux pour tester des hypothèses afin de déterminer si les données sont conformes aux attentes. L'idée de base qui sous-tend le test est de comparer les valeurs observées dans vos données aux valeurs attendues si l'hypothèse nulle est vraie.
La p-value, c'est quoi ? C'est la probabilité conditionnelle a posteriori, supposant l'hypothèse nulle a priori comme juste. Si on considère notre cas des salaires que l'on a vu précédemment, par exemple en bilatéral, avec un alpha de 5 %, ça veut dire 2,5 % à gauche et 2,5 % à droite.
TEST DE CHI AU CARRÉ
Il détermine s'il existe une association entre des variables qualitatives. Si la valeur P associée à la statistique de contraste est plus petite on rejettera l'hypothèse nulle. Elle permet d'évaluer l'effet du hasard.
On écrit dans la partie "Résultats": "La différence est significative (p < 0.05)" ou au contraire: "On n'observe pas d'effet significatif (p=0.47)". Attention si p est plus grand que le seuil on ne peut pas conclure. Absence de preuve n'est pas preuve d'absence !
Le test statistique se base sur le coefficient de Pearson r calculé par cor(x, y) . Il suit une distribution t avec un degré de liberté ddl = length(x)-2 si les échantillons suivent une distribution normale indépendante. La fonction indique enfin une p-value pour ce test.