La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 294) est la suivante : 1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294. Pour que 294 soit un nombre premier, il aurait fallu que 294 ne soit divisible que par lui-même et par 1.
250 a des facteurs de 2 et 125 . 125 a des facteurs de 5 et 25 . 25 a des facteurs de 5 et 5 .
Le nombre 588 peut se décomposer sous la forme 588 = 22 ×3×72.
400 a des facteurs de 2 et 200 . 200 a des facteurs de 2 et 100 . 100 a des facteurs de 2 et 50 . 50 a des facteurs de 2 et 25 .
270 a des facteurs de 2 et 135 . 135 a des facteurs de 3 et 45 . 45 a des facteurs de 3 et 15 . 15 a des facteurs de 3 et 5 .
126 = 2 × 63 = 2 × 2 × 6 75 = 3 × 25 = 2 × 2 × 2 × 3 63 n'est pas divisible par 2.
Vérifier que 360 = 23 x 32 x 5 et 840 = 23 × 3 × 5 × 7.
140 a des facteurs de 2 et 70 . 70 a des facteurs de 2 et 35 . 35 a des facteurs de 5 et 7 .
On divise 21 par 3 ; on obtient 7. Les facteurs premiers sont : 2, 3, 3, 3 et 7. On écrit 378 = 2 × 3 × 3 × 3 × 7 = 2 × 33 × 7.
Je décompose les nombres : 125=100+20+5 Je décompose les nombres : 125=100+20+5 Je retrouve le nombre. Je retrouve le nombre.
420 = 2 × 210 = 2 × 2 × 105 = 2 × 2 × 3 × 35 = 2 × 2 × 3 × 5 × 7 = 22 × 3 × 5 × 7 qui est sa décomposition en produits de facteurs premiers.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 294) est la suivante : 1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294. Pour que 294 soit un nombre premier, il aurait fallu que 294 ne soit divisible que par lui-même et par 1.
Décomposer un nombre, c'est indiquer la position (la classe et le rang) de chacun des chiffres qui composent ce nombre. 42 603 = 4 × 10 000 + 2 × 1 000 + 6 × 100 + 3 × 1.
Décompose 24 en montrant ses facteurs : 1, 2, 3, 4, 6, 8 et 12 sont tous des facteurs de 24.
Algèbre Exemples
174 a des facteurs de 2 et 87 .
630 a des facteurs de 2 et 315 . 315 a des facteurs de 3 et 105 . 105 a des facteurs de 3 et 35 . 35 a des facteurs de 5 et 7 .
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 540) est la suivante : 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540. Pour que 540 soit un nombre premier, il aurait fallu que 540 ne soit divisible que par lui-même et par 1.
Exercice 42 a) 7×8×4 n'est pas la décomposition en produit de facteurs premiers de 224 car 4 et 8 ne sont pas premiers b) 224=7×8×4=7×2×2×2×2×2=7×25 7×25 est la décomposition en produit de facteurs premiers de 224 car 2 et 7 sont premiers.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 425) est la suivante : 1, 5, 17, 25, 85, 425. Pour que 425 soit un nombre premier, il aurait fallu que 425 ne soit divisible que par lui-même et par 1.
390 a des facteurs de 2 et 195 . 195 a des facteurs de 3 et 65 . 65 a des facteurs de 5 et 13 .
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 330) est la suivante : 1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55, 66, 110, 165, 330. Pour que 330 soit un nombre premier, il aurait fallu que 330 ne soit divisible que par lui-même et par 1.
Première méthode : décomposition des nombres en facteurs premiers On a vu à la question 1. a que : 780 = 22 × 3 × 5 × 13 et 504 = 23 × 32 × 7.