en
Propriété : Un nombre entier supérieur ou égal à 2 se décompose d'une manière unique en produit de facteurs premiers. Il existe une méthode pour décomposer : exemple : décomposons 84 : Je divise par les nombres premiers : 2-3-5-7-11-13…..
Exemples : 48 = 6x8 = (2x3)x(2x2x2) = 2x2x2x2x3.
Première méthode : décomposition des nombres en facteurs premiers On a vu à la question 1. a que : 780 = 22 × 3 × 5 × 13 et 504 = 23 × 32 × 7.
Chaque nombre composée peut être décomposé en produit de plusieurs nombres (facteurs) premiers. Un nombre premier est un nombre qui est divisble uniquement par lui-même et par 1. Par exemple 2, 3, 5 etc. Un facteur premier peut être noté plusieurs fois dans le produit.
Pour décomposer un nombre en ses facteurs premiers, on le divise successivement par 2, 3, 5, 7, ... soit la suite des nombres premiers et on divise au besoin plus d'une fois par le même nombre. Ainsi, pour trouver les facteurs premiers de 378, on fait ces opérations. On divise 378 par 2 ; on obtient 189.
Ou, commencer par décomposer les 6 produits en facteurs premiers : par exemple, dans le premier triangle, 320 = 2 x 2 x 2 x 2 x 2 x 2 x 5 indique que 3, 6, 7 et 9 ne peuvent figurer dans cet alignement qui doit par conséquent contenir les 5 autres facteurs 1, 2, 4, 5 et 8.
Je décompose les nombres : 125=100+20+5 Je décompose les nombres : 125=100+20+5 Je retrouve le nombre. Je retrouve le nombre.
1. Décomposer 69 ; 1 150 et 4 140 en produits de facteurs premiers. 69 = 3 x 23 ; 1150 = 2 x 52 x 23 ; 4140 = 22 x 32 x 5 x 23. 2.
la liste des facteurs premiers de 220, obtenue au bout de seulement cinq divisions, est 2, 2, 5, 11 ; la liste des diviseurs de 220 est donc : 1 ; 2 ; 5 ; 11 ; 2 x 2 ; 2 x 5 ; 2 x 11 ; 5 x 11 ; 2 x 2 x 5 ; 2 x 2 x 11 ; 2 x 5 x 11 ; 2 x 2 x 5 x 11.
600 a des facteurs de 2 et 300 . 300 a des facteurs de 2 et 150 . 150 a des facteurs de 2 et 75 . 75 a des facteurs de 3 et 25 .
512 a des facteurs de 2 et 256 . 256 a des facteurs de 2 et 128 . 128 a des facteurs de 2 et 64 . 64 a des facteurs de 2 et 32 .
Décomposer les nombres 162 et 108 en produits de facteurs premiers. 162 = 2 x 34 ; 108 = 22 x33. 2. Déterminer deux diviseurs communs aux nombres 162 et 108 plus grands que 10.
a. On calcule : 126 = 2 × 63 = 2 × 7 × 9 = 2 × 32 × 7. On a aussi : 90 = 2 × 45 = 2 × 5 × 9 = 2 × 32 × 5.
126 = 2 × 63 = 2 × 2 × 6 75 = 3 × 25 = 2 × 2 × 2 × 3 63 n'est pas divisible par 2. 25 n'est pas divisible par 3. 3 est un nombre premier.
175 = 11 + 72 + 53 (135, 518 et 598 ont aussi cette propriété).
La décomposition en facteurs premiers de 140 est : 140 = 2×2×5×7. La décomposition en facteurs premiers de 870 est : 870 = 2×3×5×29.
Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 32 × 5, soit 3 × 3 × 5.