Exemple : décomposer 780 en produit de facteurs premiers. Donc 780 = 2 × 2 × 3 × 5 × 13 = 2² × 3 × 5 × 13.
Décomposer un nombre entier, c'est le découper en « morceaux ». On indique, en fonction de sa grandeur, combien il comporte de centaines de mille, de dizaines de mille, d'unités de mille, de centaines, de dizaines et d'unités. Si on rassemble ces morceaux en les additionnant, on retrouve le nombre de départ.
700 a des facteurs de 2 et 350 . 350 a des facteurs de 2 et 175 . 175 a des facteurs de 5 et 35 . 35 a des facteurs de 5 et 7 .
270 a des facteurs de 2 et 135 . 135 a des facteurs de 3 et 45 . 45 a des facteurs de 3 et 15 . 15 a des facteurs de 3 et 5 .
280 a des facteurs de 2 et 140 . 140 a des facteurs de 2 et 70 . 70 a des facteurs de 2 et 35 . 35 a des facteurs de 5 et 7 .
625 a des facteurs de 5 et 125 . 125 a des facteurs de 5 et 25 . 25 a des facteurs de 5 et 5 .
600 a des facteurs de 2 et 300 . 300 a des facteurs de 2 et 150 . 150 a des facteurs de 2 et 75 . 75 a des facteurs de 3 et 25 .
260 a des facteurs de 2 et 130 . 130 a des facteurs de 2 et 65 . 65 a des facteurs de 5 et 13 .
250 a des facteurs de 2 et 125 . 125 a des facteurs de 5 et 25 . 25 a des facteurs de 5 et 5 .
Conclusion de l'activité : "Les nombres 900, 800, 700, 600, 500, 400, 300, 200 et 100 permettent de décomposer 1000.
En mathématiques
Le nombre 360 a pour décomposition en produit de facteurs premiers 2×2×2×3×3×5 ainsi, il possède 24 diviseurs et, comme il est le plus petit entier à en avoir autant c'est un nombre hautement composé. il est divisible par tous les chiffres de un à dix, sauf sept.
200 a des facteurs de 2 et 100 . 100 a des facteurs de 2 et 50 . 50 a des facteurs de 2 et 25 . 25 a des facteurs de 5 et 5 .
Parmi ces propositions, quelle est la décomposition en produits de facteurs premiers de 420 ? 420 = 2 × 210 = 2 × 2 × 105 = 2 × 2 × 3 × 35 = 2 × 2 × 3 × 5 × 7 = 22 × 3 × 5 × 7 qui est sa décomposition en produits de facteurs premiers.
320 a des facteurs de 2 et 160 . 160 a des facteurs de 2 et 80 . 80 a des facteurs de 2 et 40 . 40 a des facteurs de 2 et 20 .
256 a des facteurs de 2 et 128 . 128 a des facteurs de 2 et 64 . 64 a des facteurs de 2 et 32 . 32 a des facteurs de 2 et 16 .
Par cette décomposition, j'ai défini 225 comme 5*5*3*3. On se rappelle qu'on cherche un nombre dont le carré est 225 donc je sépare 5*5*3*3 en une multiplication de deux nombres égaux.
900 a des facteurs de 2 et 450 . 450 a des facteurs de 2 et 225 . 225 a des facteurs de 3 et 75 . 75 a des facteurs de 3 et 25 .
630 a des facteurs de 2 et 315 . 315 a des facteurs de 3 et 105 . 105 a des facteurs de 3 et 35 . 35 a des facteurs de 5 et 7 .
450 a des facteurs de 2 et 225 . 225 a des facteurs de 3 et 75 . 75 a des facteurs de 3 et 25 . 25 a des facteurs de 5 et 5 .