Le terme général d'une suite arithmétique (Un) est donné par la formule suivante: Un = Up + (n-p)×r (où Up est le terme initial). Cas particulier si U0 est le terme initial, alors Un=U0+nr. Toute suite arithmétique est caractérisée par sa raison r et son premier terme.
Une suite géométrique est une suite telle que chaque terme se déduit du précédent par la multiplication par un réel constant (également appelé la raison de la suite). Pour montrer qu'une suite (Vn) est géométrique, on montre qu'il existe un réel q constant tel que, pour tout entier n, V_{n + 1} = q \times V_n.
Exemple : Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. .
Si la suite est une suite arithmétique, le nombre réel r s'appelle la raison de cette suite. Autrement dit, une suite est arithmétique si et seulement si chaque terme s'obtient en ajoutant au terme précédent un nombre réel r, toujours le même.
Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Une suite géométrique est une suite (vn) telle que ∀n∈N, v_{n+1} = v_n \times q, avec q\in \mathbb{R}. On passe d'un terme au suivant en multipliant toujours par le même réel q. Une fois que l'on a identifié une suite géométrique, on peut donner sa forme explicite.
En mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent.
Une autre façon de pratiquer les suites et régularités avec les enfants est d'utiliser des objets de la vie de tous les jours. Vous pourriez prendre des legos et commencer une suite en demandant à votre enfant de la poursuivre.
aboutissement, conséquence, continuation, contrecoup, développement, effet, fruit, impact, incidence, prolongement, rançon, répercussion, résultat, retombée, ricochet, séquelle. Contraire : cause, origine, source. 5.
Le suites peuvent nous aider à formaliser le problème, c'est-à-dire à le traduire en mathématiques. Notons u_n la somme contenue dans le livret à l'année n, en convenant de noter u_0=100. Il faut maintenant trouver la relation de récurrence.
Il est possible de retrouver le terme général à partir de la suite des sommes partielles par les formules. Ainsi toute somme partielle est une suite, mais toute suite est également une somme partielle (associée à la série des différences des termes consécutifs, avec un premier terme nul).
En utilisant le coefficient directeur et l'ordonnée à l'origine. Si on a la représentation graphique d'une fonction affine, on peut obtenir son expression en déterminant le coefficient directeur a et l'ordonnée à l'origine b. On donne la représentation graphique d'une fonction affine f.
Forme explicite d'une suite arithmétique
un = u0 +nr. ☞ Si (un) est une suite arithmétique de raison r, alors pour tous les entiers naturels n et k,ona: un = uk +(n −k)r.
Une suite (vn)est dite géométrique lorsqu'il existe un nombre réel non nul q tel que, pour tout entier naturel n, vn+1=q×vn. Le nombre réel q est appelé la raison de la suite (vn).
(un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.
Une suite est dite constante si il existe un réel x tel que un = x pour tout n.
Rappel : Dire qu'une suite (Un) est croissante signifie que pour tout entier n, Un+1 Un. Dire qu'une suite (Un) est décroissante signifie que pour tout entier n, Un+1 Un.
Solution. Calculons u 1 u 0 et u 2 u 1 : ² ² u 1 u 0 = 1 ² + 1 / 0 ² + 1 = 2 et ² ² u 2 u 1 = 2 ² + 1 1 ² + 1 = 5 2 . Ces deux nombres sont différents donc la suite ( u n ) n'est pas géométrique.
On sait que : Si la suite est croissante et majorée, elle converge. Si la suite est décroissante et minorée, elle converge.
En mathématiques, la raison est la valeur qui permet de passer d'un terme au suivant dans certaines suites définies par récurrence.
On considère une suite géométrique (un) dont on connaît la raison q et le premier terme u0. Alors, pour tout entier naturel n, un=u0×qn.