Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
Propriété : Si trois points A B et C sont tels que l'angle ABC est nul, alors les points A B et C sont alignés.
On dit que deux vecteurs sont colinéaires si, en multipliant les composantes de l'un des vecteurs par un scalaire k (constante), on obtient les composantes de l'autre vecteur.
alignés (points -) (2) : Deux points (ou moins) sont toujours alignés. Trois points non alignés définissent un plan de l'espace. A, B et C sont alignés si et seulement si les vecteurs et sont colinéaires.
On a donc a BCD = a CBA + a ABD = 90° + 90° = 180° L'angle a CBD étant plat alors les points B, C et D sont alignés.
On peut utiliser la colinéarité pour démontrer que des droites sont parallèles en utilisant la propriété suivante : Les droites (AB) et (MN) sont parallèles si et seulement si les vecteurs et sont colinéaires.
Somme de vecteurs de même origine
Soient deux vecteurs et . On choisit des représentants A B → de et A C → de de même origine. Alors le vecteur somme u → + v → est le vecteur A D → où est tel que ABDC est un parallélogramme.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles.
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
Si AC + CB = AB alors C appartient au segment [AB] donc les points sont alignés. dans le triangle. Propriété : Si un point M appartient à la médiatrice de [AB] alors AM = BM. Si AM = BM alors M appartient à la médiatrice de [AB].
Définition : Soit (→i,→j) une base orthonormée, Soient →u(x1y1) et →v(x2y2) deux vecteurs exprimés dans cette base, On appelle déterminant des deux vecteurs →u et →v le réel x1y2−y1x2.
Soit un repère (O;i;j). Deux vecteurs u(x;y) et v(x'y') sont colinéaires si et seulement si leurs coordonnées sont proportionnelles : il existe un réel k tel que x= kx' et y=ky').
La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²). * Pour calculer la norme d'un vecteur du plan, laissez la case z vide. Exemples : Calculons la norme du vecteur du plan de coordonnées (5;12).
Lorsque deux points A et B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
On peut dire que ABCD est un parallélogramme car ses diagonales [AC] et [BD] ont le même milieu I. De plus, ABCD est un rectangle car il a un angle droit en B.
Si un quadrilatère a trois angles droits alors c'est un rectangle. Si les diagonales d'un quadrilatère se coupent en leur milieu et sont de même longueur alors c'est un rectangle. Si un parallélogramme a un angle droit alors c'est un rectangle.
Exemples : a) ( 2 ; – 3 ) et ( 10 ; – 15 ) sont colinéaires en effet 10 = 2 x 5 et –15 = –3 x 5 donc = 5 . c) (4 ; 5 ) et (8 ; –10 ) ne sont pas colinéaires en effet : ≠ 0 et ≠ 0 et s'il existe tel que = , alors 8 = x 4 donc = 2 et -10 = x 5 donc = -2 .
Définition de colinéaire adjectif
Mathématiques Vecteurs colinéaires, qui ont la même direction.
Definition. - par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
Action d'aligner, fait d'être aligné : L'alignement des enfants devant la salle de classe. 2. Ligne droite formée par des objets alignés : Des alignements d'arbres.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Un segment est un ensemble fini de points alignés. Il y a deux extrémités : ce sont les points de début et de fin du segment. On nomme le segment avec 2 lettres majuscules entre crochets fermés. Ces deux lettres sont les noms de deux points qui sont les extrémités du segment.
On distingue trois types de vecteurs: vecteurs libres, glissants et liés.